443 research outputs found
Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors
We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors
Measuring CMB Polarization with BOOMERANG
BOOMERANG is a balloon-borne telescope designed for long duration (LDB)
flights around Antarctica. The second LDB Flight of BOOMERANG took place in
January 2003. The primary goal of this flight was to measure the polarization
of the CMB. The receiver uses polarization sensitive bolometers at 145 GHz.
Polarizing grids provide polarization sensitivity at 245 and 345 GHz. We
describe the BOOMERANG telescope noting changes made for 2003 LDB flight, and
discuss some of the issues involved in the measurement of polarization with
bolometers. Lastly, we report on the 2003 flight and provide an estimate of the
expected results.Comment: 12 pages, 8 figures, To be published in the proceedings of "The
Cosmic Microwave Background and its Polarization", New Astronomy Reviews,
(eds. S. Hanany and K.A. Olive). Fixed typos, and reformatted citation
Optical Characterisation of a Camera module Developed for Ultra-low NEP TES Detector Arrays at FIR Wavelengths
Here we report on the optical design and on the spectral-spatial characterisation of a small 16 pixel camera. The prototype uses TES detectors with NEPs ~10-16 W/Hz0.5 which have been fabricated with near identical optical coupling structures to mimic their much lower NEP counterparts (~10-19 W/Hz0.5). This modification, which is achieved through changing only the pixel thermal conductance, G, has allowed us to perform spectral/spatial cryogenic testing using a 100mK ADR to view room temperature thermal sources. The measurements show a flat spectral response across the waveband and minimal side lobe structure in the antenna patterns down to 30dB
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region
The scientific potential of space-based gravitational wave detectors
The millihertz gravitational wave band can only be accessed with a
space-based interferometer, but it is one of the richest in potential sources.
Observations in this band have amazing scientific potential. The mergers
between massive black holes with mass in the range 10 thousand to 10 million
solar masses, which are expected to occur following the mergers of their host
galaxies, produce strong millihertz gravitational radiation. Observations of
these systems will trace the hierarchical assembly of structure in the Universe
in a mass range that is very difficult to probe electromagnetically. Stellar
mass compact objects falling into such black holes in the centres of galaxies
generate detectable gravitational radiation for several years prior to the
final plunge and merger with the central black hole. Measurements of these
systems offer an unprecedented opportunity to probe the predictions of general
relativity in the strong-field and dynamical regime. Millihertz gravitational
waves are also generated by millions of ultra-compact binaries in the Milky
Way, providing a new way to probe galactic stellar populations. ESA has
recognised this great scientific potential by selecting The Gravitational
Universe as its theme for the L3 large satellite mission, scheduled for launch
in ~2034. In this article we will review the likely sources for millihertz
gravitational wave detectors and describe the wide applications that
observations of these sources could have for astrophysics, cosmology and
fundamental physics.Comment: 18 pages, 2 figures, contribution to Gravitational Wave Astrophysics,
the proceedings of the 2014 Sant Cugat Forum on Astrophysics; v2 includes one
additional referenc
Cosmological distance indicators
We review three distance measurement techniques beyond the local universe:
(1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and
(3) HI intensity mapping. We describe the principles and theory behind each
method, the ingredients needed for measuring such distances, the current
observational results, and future prospects. Time delays from strongly lensed
quasars currently provide constraints on with < 4% uncertainty, and with
1% within reach from ongoing surveys and efforts. Recent exciting discoveries
of strongly lensed supernovae hold great promise for time-delay cosmography.
BAO features have been detected in redshift surveys up to z <~ 0.8 with
galaxies and z ~ 2 with Ly- forest, providing precise distance
measurements and with < 2% uncertainty in flat CDM. Future BAO
surveys will probe the distance scale with percent-level precision. HI
intensity mapping has great potential to map BAO distances at z ~ 0.8 and
beyond with precisions of a few percent. The next years ahead will be exciting
as various cosmological probes reach 1% uncertainty in determining , to
assess the current tension in measurements that could indicate new
physics.Comment: Review article accepted for publication in Space Science Reviews
(Springer), 45 pages, 10 figures. Chapter of a special collection resulting
from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in
the Space Ag
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Coated dielectric lens design, modelling and measurements for future CMB polarimetry missions
We present an ongoing programme of work to investigate the use of large dielectric lenses with coating layers for future satellite-based cosmic microwave background (CMB) polarimetry missions. The primary purpose of this study is to validate modelling and manufacturing techniques. We present details of the study, and preliminary results of material and lens testing
- …
