3,241 research outputs found
Rotating gravity currents: small-scale and large-scale laboratory experiments and a geostrophic model
Laboratory experiments simulating gravity-driven coastal surface currents produced by estuarine fresh-water discharges into the ocean are discussed. The currents are generated inside a rotating tank filled with salt water by the continuous release of buoyant fresh water from a small source at the fluid surface. The height, the width and the length of the currents are studied as a function of the background rotation rate, the volumetric discharge rate and the density difference at the source. Two complementary experimental data sets are discussed and compared with each other. One set of experiments was carried out in a tank of diameter 1 m on a small-scale rotating turntable. The second set of experiments was conducted at the large-scale Coriolis Facility (LEGI, Grenoble) which has a tank of diameter 13 m. A simple geostrophic model predicting the current height, width and propagation velocity is developed. The experiments and the model are compared with each other in terms of a set of non-dimensional parameters identified in the theoretical analysis of the problem. These parameters enable the corresponding data of the large-scale and the small-scale experiments to be collapsed onto a single line. Good agreement between the model and the experiments is found
Multiband Superconductivity in Spin Density Wave Metals
We study the emergence of multiband superconductivity with - and wave
symmetry on the background of spin density wave (SDW). We show that the SDW
coherence factors renormalize the momentum dependence of the superconducting
(SC) gap, yielding a SC state with an \emph{unconventional} s-wave symmetry.
Interband Cooper pair scattering stabilizes superconductivity in both
symmetries. With increasing SDW order, the s-wave state is more strongly
suppressed than the d-wave state. Our results are universally applicable to
two-dimensional systems with a commensurate SDW.Comment: 4 pages, 3 figure
Electronic Raman scattering in correlated materials: exact treatment of nonresonant, mixed, and resonant scattering with dynamical mean field theory
We solve for the electronic Raman scattering response functions on an
infinite-dimensional hypercubic lattice employing dynamical mean field theory.
This contribution extends previous work on the nonresonant response to include
the mixed and resonant contributions. We focus our attention on the spinless
Falicov-Kimball model, where the problem can be solved exactly, and the system
can be tuned to go through a Mott-Hubbard-like metal-insulator transition.
Resonant effects vary in different scattering geometries, corresponding to the
symmetries of the charge excitations scattered by the light. We do find that
the Raman response is large near the double resonance, where the transfered
frequency is close to the incident photon frequency. We also find a joint
resonance of both the charge-transfer peak and the low-energy peak when the
incident photon frequency is on the order of the interaction strength. In
general, the resonance effects can create order of magnitude (or more)
enhancements of features in the nonresonant response, especially when the
incident photon frequency is somewhat larger than the frequency of the
nonresonant feature. Finally, we find that the resonant effects also exhibit
isosbestic behavior, even in the A1g and B2g sectors, and it is most prominent
when the incident photon frequency is on the order of the interaction energy.Comment: (20 pages, 13 figures
Observation of Leggett's collective mode in a multi-band MgB2 superconductor
We report observation of Leggett's collective mode in a multi-band MgB2
superconductor with T_c=39K arising from the fluctuations in the relative phase
between two superconducting condensates. The novel mode is observed by Raman
spectroscopy at 9.4 meV in the fully symmetric scattering channel. The observed
mode frequency is consistent with theoretical considerations based on the first
principle computations.Comment: Accepted for PR
Observation of a 500meV Collective Mode in LaSrCuO and NdCuO
Utilizing resonant inelastic x-ray scattering, we report a previously
unobserved mode in the excitation spectrum of LaSrCuO at 500
meV. The mode is peaked around the (,0) point in reciprocal space and is
observed to soften, and broaden, away from this point. Samples with x=0, 0.01,
0.05, and 0.17 were studied. The new mode is found to be rapidly suppressed
with increasing Sr content and is absent at =0.17, where it is replaced by a
continuum of excitations. The peak is only observed when the incident x-ray
polarization is normal to the CuO planes and is also present in NdCuO.
We suggest possible explanations for this excitation.Comment: 5 pages, 5 figure
Outbreak of Rift Valley fever affecting veterinarians and farmers in South Africa, 2008
Background. During 2008, Rift Valley fever (RVF) virus re-emerged in South Africa as focal outbreaks in several provinces. Aims. To investigate an outbreak affecting cattle farmers and farm workers, and the staff and students of a veterinary school, assess the prevalence of infection during the outbreak, document the clinical presentation of cases, and identify potential risk factors. Methods. We conducted a cross-sectional serological survey of exposed veterinarians and farmers, who were examined to determine the presence of current or recent illness. Blood specimens were collected for virus isolation, nucleic acid detection and serology. A subset was interviewed using a standardised questionnaire to obtain data on recent exposures and risk factors for infection. Results. Of 53 participants potentially exposed to infected domestic ruminants, 15% had evidence of recent infection and 4% evidence of past exposure to the RVF virus. The prevalence of acute infection was 21% in veterinarians compared with 9% in farmers and farm workers. After a mean incubation period of 4.3 days, the most frequent symptoms experienced included myalgia (100%), headache (88%) and malaise (75%). No asymptomatic cases were identified. Transmission by direct contact with infected animals was the major risk factor in these professional groups. Performing animal autopsies was significantly associated with acute infection (risk ratio 16.3, 95% confidence interval 2.3 - 114.2). Conclusions. Increased risks associated with veterinary practices highlight a need for the use of personal protective equipment, and identify veterinarians as a primary target group for future vaccination
Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4
Low energy polarized electronic Raman scattering of the electron doped
superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic
d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c
at Fermi surface intersections with antiferromagnetic Brillouin zone (the ``hot
spots'') and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone
boundaries. The gap enhancement in the vicinity of the ``hot spots'' emphasizes
role of antiferromagnetic fluctuations and similarity in the origin of
superconductivity for electron- and hole-doped cuprates.Comment: 4 pages, 4 figure
Resonant Raman Scattering in Antiferromagnets
Two-magnon Raman scattering provides important information about electronic
correlations in the insulating parent compounds of high- materials. Recent
experiments have shown a strong dependence of the Raman signal in
geometry on the frequency of the incoming photon. We present an analytical and
numerical study of the Raman intensity in the resonant regime. It has been
previously argued by one of us (A.Ch) and D. Frenkel that the most relevant
contribution to the Raman vertex at resonance is given by the triple resonance
diagram. We derive an expression for the Raman intensity in which we
simultaneously include the enhancement due to the triple resonance and a final
state interaction. We compute the two-magnon peak height (TMPH) as a function
of incident frequency and find two maxima at and . We argue that the
high-frequency maximum is cut only by a quasiparticle damping, while the
low-frequency maximum has a finite amplitude even in the absence of damping. We
also obtain an evolution of the Raman profile from an asymmetric form around
to a symmetric form around . We
further show that the TMPH depends on the fermionic quasiparticle damping, the
next-nearest neighbor hopping term and the corrections to the
interaction vertex between light and the fermionic current. We discuss our
results in the context of recent experiments by Blumberg et al. on
and and R\"{u}bhausen et al. on
and show that the triple resonance theory yields a qualitative
and to some extent also quantitative understanding of the experimental data.Comment: 19 pages, RevTeX, 16 figures embedded in the text, ps-file is also
available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm
Disease Knowledge Transfer across Neurodegenerative Diseases
We introduce Disease Knowledge Transfer (DKT), a novel technique for
transferring biomarker information between related neurodegenerative diseases.
DKT infers robust multimodal biomarker trajectories in rare neurodegenerative
diseases even when only limited, unimodal data is available, by transferring
information from larger multimodal datasets from common neurodegenerative
diseases. DKT is a joint-disease generative model of biomarker progressions,
which exploits biomarker relationships that are shared across diseases. Our
proposed method allows, for the first time, the estimation of plausible,
multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare
neurodegenerative disease where only unimodal MRI data is available. For this
we train DKT on a combined dataset containing subjects with two distinct
diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD)
dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior
Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for
which only a limited number of Magnetic Resonance Imaging (MRI) scans are
available. Although validation is challenging due to lack of data in PCA, we
validate DKT on synthetic data and two patient datasets (TADPOLE and PCA
cohorts), showing it can estimate the ground truth parameters in the simulation
and predict unseen biomarkers on the two patient datasets. While we
demonstrated DKT on Alzheimer's variants, we note DKT is generalisable to other
forms of related neurodegenerative diseases. Source code for DKT is available
online: https://github.com/mrazvan22/dkt.Comment: accepted at MICCAI 2019, 13 pages, 5 figures, 2 table
- …