17,989 research outputs found
Explorer Satellite Electronics
A discussion is presented of the design restrictions and the philosophy which enabled the Explorer satellites to be first during the IGY to reveal the presence of a belt of intense cosmic radiation encircling the earth's equator. In addition, an indication of the amount and momentum of cosmic dust in the solar system was obtained from the Explorers. Methods used to obtain reliability in the transducing and communications system are described, together with interpretations of space-environment information as deduced from the narrow-band telemetry
Antiferromagnetic ordering of energy levels for spin ladder with four-spin cyclic exchange: Generalization of the Lieb-Mattis theorem
The Lieb-Mattis theorem is generalized to an antiferromagnetic spin-ladder
model with four-spin cyclic exchange interaction. We prove that for J>2K, the
antiferromagnetic ordering of energy levels takes place separately in two
sectors, which remain symmetric and antisymmetric under the reflection with
respect to the longitudinal axis of the ladder. We prove also that at the
self-dual point J=2K, the Lieb-Mattis rule holds in the sectors with fixed
number of rung singlets. In both cases, it agrees with the similar rule for
Haldane chain with appropriate spin number.Comment: 4 pages, some references updated and added, typos corrected, to
appear in Phys. Rev.
Large magnetoresistance effect due to spin-injection into a non-magnetic semiconductor
A novel magnetoresistance effect, due to the injection of a spin-polarized
electron current from a dilute magnetic into a non-magnetic semiconductor, is
presented. The effect results from the suppression of a spin channel in the
non-magnetic semiconductor and can theoretically yield a positive
magnetoresistance of 100%, when the spin flip length in the non-magnetic
semiconductor is sufficiently large. Experimentally, our devices exhibit up to
25% magnetoresistance.Comment: 3 figures, submitted for publicatio
A compact 90 kilowatt electric heat source for heating inert gases to 1700 F
Design and fabrication of compact electric heat source for heating inert gase
Human monoclonal islet specific autoantibodies share features of islet cell and 64 kDa antibodies
The first human monoclonal islet cell antibodies of the IgG class (MICA 1-6) obtained from an individual with Type 1 (insulin-dependent) diabetes mellitus were cytoplasmic islet cell antibodies selected by the indirect immunofluorescence test on pancreas sections. Surprisingly, they all recognized the 64 kDa autoantigen glutamate decarboxylase. In this study we investigated which typical features of cytoplasmic islet cell antibodies are represented by these monoclonals. We show by double immunofluorescence testing that MICA 1-6 stain pancreatic beta cells which is in agreement with the beta-cell specific expression of glutamate decarboxylase. In contrast an islet-reactive IgM monoclonal antibody obtained from a pre-diabetic individual stained all islet cells but lacked the tissue specificity of MICA 1-6 and must therefore be considered as a polyreactive IgM-antibody. We further demonstrate that MICA 1-6 revealed typical features of epitope sensitivity to biochemical treatment of the target tissue which has been demonstrated for islet cell antibodies, and which has been used to argue for a lipid rather than a protein nature of target antigens. Our results provide direct evidence that the epitopes recognized by the MICA are destroyed by methanol/chloroform treatment but reveal a high stability to Pronase digestion compared to proinsulin epitopes. Conformational protein epitopes in glutamate decarboxylase therefore show a sensitivity to biochemical treatment of sections such as ganglioside epitopes. MICA 1-6 share typical features of islet cell and 64 kDa antibodies and reveal that glutamate decarboxylase-reactive islet cell antibodies represent a subgroup of islet cell antibodies present in islet cell antibody-positive sera
Bound States in Sharply Bent Waveguides: Analytical and Experimental Approach
Quantum wires and electromagnetic waveguides possess common features since
their physics is described by the same wave equation. We exploit this analogy
to investigate experimentally with microwave waveguides and theoretically with
the help of an effective potential approach the occurrence of bound states in
sharply bent quantum wires. In particular, we compute the bound states, study
the features of the transition from a bound to an unbound state caused by the
variation of the bending angle and determine the critical bending angles at
which such a transition takes place. The predictions are confirmed by
calculations based on a conventional numerical method as well as experimental
measurements of the spectra and electric field intensity distributions of
electromagnetic waveguides
Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts
In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time
- …