1,150 research outputs found

    Polygons vs. clumps of discs: a numerical study of the influence of grain shape on the mechanical behaviour of granular materials

    Full text link
    We performed a series of numerical vertical compression tests on assemblies of 2D granular material using a Discrete Element code and studied the results with regard to the grain shape. The samples consist of 5,000 grains made from either 3 overlapping discs (clumps - grains with concavities) or six-edged polygons (convex grains). These two grain type have similar external envelopes, which is a function of a geometrical parameter α\alpha. In this paper, the numerical procedure applied is briefly presented followed by the description of the granular model used. Observations and mechanical analysis of dense and loose granular assemblies under isotropic loading are made. The mechanical response of our numerical granular samples is studied in the framework of the classical vertical compression test with constant lateral stress (biaxial test). The comparison of macroscopic responses of dense and loose samples with various grain shapes shows that when α\alpha is considered a concavity parameter, it is therefore a relevant variable for increasing mechanical performances of dense samples. When α\alpha is considered an envelope deviation from perfect sphericity, it can control mechanical performances for large strains. Finally, we present some remarks concerning the kinematics of the deformed samples: while some polygon samples subjected to a vertical compression present large damage zones (any polygon shape), dense samples made of clumps always exhibit thin reflecting shear bands. This paper was written as part of a CEGEO research project www.granuloscience.comComment: This version of the paper doesn't include figures. Visit the journal web site to download the final version of the paper with the figure

    Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass

    Get PDF
    At the transition from a static to a dynamic deformation regime of a shear band in bulk metallic glasses, stress transients in terms of overshoots are observed. We interpret this phenomenon with a repeated shear-melting transition and are able to access a characteristic time for a liquidlike to solidlike transition in the shear band as a function of temperature, enabling us to understand why shear bands arrest during inhomogenous serrated flow in bulk metallic glasses

    A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    Get PDF
    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandybridge 8-core CPU by a factor of 3.4

    A New Clinically Driven Classification for Acute Aortic Dissection.

    Get PDF
    Objectives: To report a new classification scheme for acute aortic dissection (AAD) that considers the aortic arch as a separate entity and integrates patterns of malperfusion syndrome (MPS). The proposed classification was evaluated retrospectively in a large population. Materials and Methods: We retrospectively reviewed pre-therapy CT angiograms of 226 consecutive patients (mean ± SD age: 64 ± 12 years) with AAD. AADs were reclassified with a new classification scheme that included three aortic dissection types (A, involving at least the ascending aorta; B, involving exclusively the descending aorta; and C, involving the aortic arch with/without the descending aorta) and four malperfusion grades (0: no MPS; 1: dynamic MPS; 2: static MPS; 3: static and dynamic MPS). AAD features were assessed and correlated to patient outcomes. Results: According to the new classification, we identified 152 type A dissections (92 A0, 11 A1, 38 A2, 11 A3); 50 type B (38 B0, 5 B1, 6 B2, 1 B3); and 24 type C (17 C0, 6 C2, 1 C3). Type C represented 11% of all AADs. MPS occurred in 39, 24, and 29% in type A, B, and C, respectively. Type C was treated with significantly more endovascular or hybrid interventions (37%) than in types A (3%) and B (20%) (p < 0.001). Conclusion: The new AAD classification was feasible, and type C was easily identified ("non-A, non-B"). Preliminary findings supported the usefulness of this classification for the decision-making process and subsequent treatments
    corecore