5,639 research outputs found

    Curvature dependence of the effect of ionic functionalization on the attraction among nanoparticles in dispersion

    Get PDF
    Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization.We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solventaveraged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing –COOK or –NH3Cl groups. To assess the change in nanoparticles’ dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%–50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface interactions in distinct geometries until an essentially curvature-independent dispersion environment is created. Insights into tuning nanoparticle interactions can guide the synthesis of a broad class of nonpolar nanoparticles, where solubility is achieved by ionic functionalization

    Effects of noise suppression and envelope dynamic range compression on the intelligibility of vocoded sentences for a tonal language

    Get PDF
    Vocoder simulation studies have suggested that the carrier signal type employed affects the intelligibility of vocoded speech. The present work further assessed how carrier signal type interacts with additional signal processing, namely, single-channel noise suppression and envelope dynamic range compression, in determining the intelligibility of vocoder simulations. In Experiment 1, Mandarin sentences that had been corrupted by speech spectrum-shaped noise (SSN) or two-talker babble (2TB) were processed by one of four single-channel noise-suppression algorithms before undergoing tone-vocoded (TV) or noise-vocoded (NV) processing. In Experiment 2, dynamic ranges of multiband envelope waveforms were compressed by scaling of the mean-removed envelope waveforms with a compression factor before undergoing TV or NV processing. TV Mandarin sentences yielded higher intelligibility scores with normal-hearing (NH) listeners than did noise-vocoded sentences. The intelligibility advantage of noise-suppressed vocoded speech depended on the masker type (SSN vs 2TB). NV speech was more negatively influenced by envelope dynamic range compression than was TV speech. These findings suggest that an interactional effect exists between the carrier signal type employed in the vocoding process and envelope distortion caused by signal processing

    An Open Resource for Non-human Primate Imaging

    Get PDF
    Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets

    A nonlinear Schr\"odinger equation for water waves on finite depth with constant vorticity

    Full text link
    A nonlinear Schr\"odinger equation for the envelope of two dimensional surface water waves on finite depth with non zero constant vorticity is derived, and the influence of this constant vorticity on the well known stability properties of weakly nonlinear wave packets is studied. It is demonstrated that vorticity modifies significantly the modulational instability properties of weakly nonlinear plane waves, namely the growth rate and bandwidth. At third order we have shown the importance of the coupling between the mean flow induced by the modulation and the vorticity. Furthermore, it is shown that these plane wave solutions may be linearly stable to modulational instability for an opposite shear current independently of the dimensionless parameter kh, where k and h are the carrier wavenumber and depth respectively

    Fine-Scale Spatial Organization of Face and Object Selectivity in the Temporal Lobe: Do Functional Magnetic Resonance Imaging, Optical Imaging, and Electrophysiology Agree?

    Get PDF
    The spatial organization of the brain's object and face representations in the temporal lobe is critical for understanding high-level vision and cognition but is poorly understood. Recently, exciting progress has been made using advanced imaging and physiology methods in humans and nonhuman primates, and the combination of such methods may be particularly powerful. Studies applying these methods help us to understand how neuronal activity, optical imaging, and functional magnetic resonance imaging signals are related within the temporal lobe, and to uncover the fine-grained and large-scale spatial organization of object and face representations in the primate brain

    Analysis of Experimental Ice Accretion Data and Assessment of a Thermodynamic Model During Ice Crystal Icing

    Get PDF
    This paper evaluates a thermodynamic ice crystal icing model that has been previously presented to describe the possible mechanisms of icing within the core of a turbofan jet engine. The model functions between two distinct ice accretions based on a surface energy balance: freeze-dominated icing and melt-dominated icing. Freeze-dominated icing occurs when liquid water (from melted ice crystals) freezes and accretes on a surface along with the existing ice of the impinging water and ice mass. This freeze-dominated icing is characterized as having strong adhesion to the surface. The amount of ice accretion is partially dictated by a freeze fraction, which is the fraction of impinging liquid water that freezes. Melt-dominated icing occurs as unmelted ice on a surface accumulates. This melt-dominated icing is characterized by weakly bonded surface adhesion. The amount of ice accumulation is partially dictated by a melt fraction, which is the fraction of impinging ice crystals that melts. Experimentally observed ice growth rates suggest that only a small fraction of the impinging ice remains on the surface, implying a mass loss mechanism such as splash, runback, bounce, or erosion. The fraction of mass loss must be determined in conjunction with the fraction of freezing liquid water or fraction of melting ice on an icing surface for a given ice growth rate. This mass loss parameter, however, along with the freeze fraction and melt fraction, are the only experimental parameters that are currently not measured directly. Using icing growth rates from ice crystal icing experiments, a methodology that has been previously proposed is used to determine these unknown parameters. This work takes ice accretion data from tests conducted by the National Aeronautics and Space Administration (NASA) at the Glenn Research Center in 2018 that examined the fundamental physics of ice crystal icing. This paper continues evaluation of the thermodynamic model from a previous effort, with additions to the model that account for sub-freezing temperatures that have been observed at the leading edge of the airfoil during icing. The predicted temperatures were generally in good agreement with measured temperatures. Other key findings include the total wet-bulb temperature being a good first order indicator of whether icing is freeze-dominated (sub-freezing values) or melt-dominated (above freezing). Maximum sticking efficiency values, the fraction of impinging mass that adheres to a surface, was calculated to be about 0.2, and retained this maximum value for a range of melt ratios (0.3 to 0.65 and possibly higher), which is defined as the ratio of liquid water content to total water content. Higher air velocities reduced the maximum sticking efficiency and shifted the icing regime to higher melt ratio values. Finally, the leading edge ice accretion angle was found to be related to ice growth (lower growth rates for smaller angles) and melt ratio (smaller melt ratios resulted in smaller angles, likely due to erosion effects)

    Evaluation of a Thermodynamic Ice Crystal Icing Model Using Experimental Ice Accretion Data

    Get PDF
    This paper presents the evaluation of a thermodynamic ice crystal icing model, previously presented to describe the possible mechanisms of icing within the core of a turbofan jet engine. It has been proposed that there are two types of distinct ice accretions based on a surface energy balance: freeze-dominated icing and melt-dominated icing. In the former, ice accretion occurs where a freeze fraction (0 to 1) of melted ice crystals freezes on a surface, along with the existing ice of the impinging water and ice mass. This freeze-dominated icing is characterized by having strong adhesion to the surface. In the latter, icing occurs from accumulated unmelted ice on a surface, where a melt fraction (0 to 1) dictates the amount of unmelted impinged ice. This melt-dominated icing is characterized by weakly bonded surface adhesion. The experimentally observed ice growth rates suggest that only a small fraction of the impinging ice remains on the surface, implying a mass loss mechanism such as splash, runback, bounce, or erosion. This mass loss parameter must be determined in conjunction with the fraction of freezing liquid water or fraction of melting ice on an icing surface. This loss parameter, however, along with the freeze and melt fraction, are the only experimental parameters that are currently not measured directly. Using reported icing growth rates from published ice crystal icing experiments, a methodology is proposed to determine these unknown parameters. This work takes reported ice accretion data from tests conducted by the National Aeronautics and Space Administration (NASA) in 2016 and tests NASA collaborated on with the National Research Council (NRC) of Canada in 2012 that examined the fundamental physics of ice crystal icing. Those research efforts sought to generate icing conditions representative of those that occur inside a jet engine when ingesting ice crystals. This paper presents the fundamental equations of the thermodynamic model, the methodology used to determine the aforementioned unknown icing parameters, and results from model evaluation using experimental data. In addition, this paper builds on the previously proposed model by adding a transient conduction term to explain ice growth behavior at the onset of experimental tests that was observed to be different from steady-state ice growth that occurred later in the test run.With the addition of this energy term, this becomes a quasi-steady model. A key finding from this work suggests that mass loss fractions can exceed 0.90 for steady ice growth periods. In addition, due to conductive heat fluxes when using a warmer-than-freezing airfoil, lower mass loss fraction values were calculated during the initial transient period

    Ice Roughness and Thickness Evolution on a Business Jet Airfoil

    Get PDF
    Experiments were performed in the Icing Research Tunnel at NASA Glenn Research Center (GRC) to investigate the ice roughness and thickness evolution on a 152.4-cm (60-in.) chord business jet airfoil exposed to both Appendix C and Appendix O (SLD - Super-cooled Large Droplet) icing conditions. The resulting measurements demonstrate that the average non-dimensional roughness and the stagnation point thickness scalings are similar to those demonstrated on symmetric wings. However, the surface variations of roughness and thickness exhibit significant differences from those observed on symmetric airfoils. The source of the roughness and thickness differences is the result of surface pressure, velocity and temperature distribution differences from the suction to the pressure sides of the airfoil. LEWICE (LEWis ICE accretion program - software developed at NASA Lewis Research Center - former name of the GRC) simulations are used to further investigate the influences of local collection efficiency and the local freezing fraction on the resulting ice roughness and thickness spatial variations

    An Open Resource for Non-human Primate Imaging

    Get PDF
    Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets

    The application of ultrasonic NDT techniques in tribology

    Get PDF
    The use of ultrasonic reflection is emerging as a technique for studying tribological contacts. Ultrasonic waves can be transmitted non-destructively through machine components and their behaviour at an interface describes the characteristics of that contact. This paper is a review of the current state of understanding of the mechanisms of ultrasonic reflection at interfaces, and how this has been used to investigate the processes of dry rough surface contact and lubricated contact. The review extends to cover how ultrasound has been used to study the tribological function of certain engineering machine elements
    corecore