758 research outputs found
Computational design of nanophotonic structures using an adaptive finite element method
We consider the problem of the construction of the nanophotonic structures of
arbitrary geometry with prescribed desired properties. We reformulate this
problem as an optimization problem for the Tikhonov functional which is
minimized on adaptively locally refined meshes. These meshes are refined only
in places where the nanophotonic structure should be designed. Our special
symmetric mesh refinement procedure allows the construction of different
nanophotonic structures. We illustrate efficiency of our adaptive optimization
algorithm on the construction of nanophotonic structure in two dimensions
Impact of nonlocal interactions in dissipative systems: towards minimal-sized localized structures
In order to investigate the size limit on spatial localized structures in a
nonlinear system, we explore the impact of linear nonlocality on their domains
of existence and stability. Our system of choice is an optical microresonator
containing an additional metamaterial layer in the cavity, allowing the
nonlocal response of the material to become the dominating spatial process. In
that case, our bifurcation analysis shows that this nonlocality imposes a new
limit on the width of localized structures going beyond the traditional
diffraction limit.Comment: 4 pages, 4 figure
<i>Schistosoma mansoni</i> cercariae experience influx of macromolecules during skin penetration
We have observed that when cercariae penetrate the skin of mice, there is influx into their tissues of Lucifer Yellow and certain labelled molecules of up to 20 kDa molecular weight. This observation was made using a variety of fluorescent membrane-impermeant compounds injected into the skin before the application of cercariae. This unexpected phenomenon was investigated further by transforming cercariae in vitro in the presence of the membrane-impermeant compounds and examining the distribution by microscopy. In schistosomula derived from this procedure, the nephridiopore and surface membrane were labelled while the pre- and post-acetabular glands were not labelled. The region associated with the oesophagus within the pharyngeal muscle clearly contained the fluorescent molecules, as did the region adjacent to the excretory tubules and the germinal mass. We used cercariae stained with carmine to aid identification of regions labelled with Lucifer Yellow. Although the mechanism of this influx is unclear, the observation is significant. From it, we can suggest an hypothesis that, during skin penetration, exposure of internal tissues of the parasite to external macromolecules represents a novel host-parasite interfac
Ondes internes du lac du Bourget: analyse des observations par des modèles linéaires
Deux campagnes de mesures effectuées sur le lac du Bourget en période de faible stratification (avril et décembre 1994) ont mis en évidence des oscillations de la thermocline de période comprise entre deux et trois jours. Ces oscillations atteignent 40 m d'amplitude pour une profondeur maximale de 145 m. Elles ont probablement un impact sur les processus biologiques et physico-chimiques qui gouvernent l'évolution de la qualité des eaux du lac.L'analyse des données brutes des températures révèle une corrélation étroite entre la génération des ondes internes et les événements de vents importants. Il apparaît en particulier que seuls les vents violents (< 8 m/s) affectent la stratification thermique de manière significative.Deux approches sont utilisées pour caractériser ces ondes :- une approche par traitement du signal qui donne accès aux périodes d'oscillations prédominantes ainsi qu'à la répartition de l'énergie dans la colonne d'eau en fonction de la fréquence.- une approche par modélisation mathématique au cours de laquelle les résultats obtenus par tjjois techniques distinctes utilisant plusieurs degrés de représentation de la bathymétrie du lac sont comparés. Ces modèles permettent de calculer les périodes d'oscillations ainsi que les déplacements de l'interface de densité et les vitesses dans chaque couche. A partir des valeurs des amplitudes d'oscillation obtenues expérimentalement, des vitesses maximales de l'ordre de 7 cm/s dans l'épîlîmnion et 3 cm/s dans l'hypolimnion ont pu être estimées pour les deux épisodes considérés.On montre que les modèles mathématiques et l'analyse spectrale corroborent les observations.There is a great concern about the understanding of water mass movements in lakes as they play a crucial role in the way nutrients and pollutants are trans-ported. This work brings new insights to the study of internal waves as it compares field data to various mathematical approaches. During the months of April and December 1994, a thermistor chain was deployed in Lake Bourget, France (length 18 km, width 3 km, maximum depth 145 m) to record temperature every 10 min, over nine unevenly spaced depths, from 10 to 51m. The time series of measurements provide a detailed picture of the characteristics and dynamics of internal waves. Records are discussed in view of the wind data observed at a meteorological station located at the south-end of the lake. According to the intensity of the wind forcing, the thermal structure is altered in different ways. When the winds are weak, the thermo-cline tilts and sets up a hydrostatic pressure gradient which balances the wind stress (TURNER, 1973). When the wind stops, the density interface oscillates until buoyancy is strong enough to balance the baroclinic pressure field. Strong winds, however, enhance large amplitude nonlinear waves which may break (Kelvin-Helmoltz instabilities), and therefore give rise to vertical mixing in the hypolimnion. During the recording periods wind stress in general is low, but occasional bursts of energy generate internal waves (fig. 2 and 3). In this paper, we focus on linear internal waves as records display a dominant response of the first longitudinal mode. The internal seiche continues to oscillate with decreasing amplitude after the wind has ceased. Two approaches have been implemented in order to characterize the internal waves. One consiste of signal treatment through spectral analysis and the second one involves mathematical modeling.Spectral analysis discloses responses of the first mode with periods of about 80h and 40h, respectively, for the April and December fleld survey (fig. 4 and 5). Further analysis of the April spectra shows that winds generate highly non-linear waves with high energy levels in a large band located in the first 30m. This band results from the mergence of two peaks of high energy at 80 and 40h respectively which probably correspond to the fundamental and second harmonie of a nonlinear wave. Then, as the wind stops, internal seiche of the first mode develops in the layer located between 30 and 50m indicating a deepening of the thermocline.Those fluctuations and their energy spectra are compared with the prédictions of three methods which are based on linear théories and consequently are not valid when the magnitude of oscillations is too high. The full phenomenon of wind-forced motion in a lake is not treated here. However, the analysis of postforcing phase is undertaken to charaterize free internai waves. One method is the Merian formula, which considers the lake as a two-layer system of constant properties and assumes the lake as a rectangular box. Another is a modified version of the Defant procédure (MORTIMER, 1979) which again assumes two layers but solves the momentum and mass équations with a varying cross section. The third method is the two layered variable depth model (TVDM) deve-loped by Schwab (HORN et aL, 1986), fitted to the basin topography and inclu-ding the free surface displacement It is expressed here through a one dimensional version directed along the main axis of the lake (i.e. the lateral variations of depth are not considered).The models display pattems of thermocline displacements (illustrated in fig. 7 and 8) which, in periodicity, are closely similar to those observed. Moreover, they give estimates of the maximum velocity induced by the seiche. Values of the order of 7 cm/s and 3 cm/s are found in the epilimnion and hypolimnion respectively. Finally, the influence exerted by the morphometry on the wave shape and associated field velocity is emphasized. In particular, the difference in the maximum speed calculated in the hypolimnion probably stems from the lateral contraction of the lake (and thus increasing speed) near Aix-les-Bains which is not taken into account in the TVD Model. The validity of the models implemented here is thrown back into question when the magnitude of the oscillations is sufficiently high to steepen the thermocline and in this particular case, a nonlinear theory (Korteweg-de Vries Equation) would be appropriate.The importance of a better knowledge of internal seiches goes beyond the field of physics. Through their influence on mixing and dispersal, those motions profoundly affect the chemical and biological economies of many lakes. Internal waves are responsible for periodic vertical displacement of the resuspended biomass, and consequently for variation in the light intensity to which algal cells are exposed. Furthermore, associated bottom currents can enhance dissolution and remobilization of nutrients by transporting the products of bacterial decomposition away from the sediment-water interface into the water column
Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial
Metamaterials are engineered materials composed of small electrical circuits
producing novel interactions with electromagnetic waves. Recently, a new class
of metamaterials has been created to mimic the behavior of media displaying
electromagnetically induced transparency (EIT). Here we introduce a planar EIT
metamaterial that creates a very large loss contrast between the dark and
radiative resonators by employing a superconducting Nb film in the dark element
and a normal-metal Au film in the radiative element. Below the critical
temperature of Nb, the resistance contrast opens up a transparency window along
with a large enhancement in group delay, enabling a significant slowdown of
waves. We further demonstrate precise control of the EIT response through
changes in the superfluid density. Such tunable metamaterials may be useful for
telecommunication because of their large delay-bandwidth products.Comment: 4 pages, 4 figure
Lésions de la « maladie du carré » chez le porc
Billon Jean, Tassin P. Lésions de la «Maladie du carré» chez le porc. In: Bulletin de l'Académie Vétérinaire de France tome 128 n°8, 1975. pp. 389-394
Non-physiological increase of AV conduction time in sinus disease patients programmed in AAIR-based pacing mode
Purpose The EVOCAVDS trial aimed to quantify the paradoxal atrioventricular (AV) conduction time lengthening in sinus node (SD) patients (pts) paced in AAIR-based pacing mode. Methods SD pts, implanted with dual-chamber pacemaker programmed in AAIR-based pacing mode, were randomized in two arms for a 1-month period: the low atrial pacing (LAP; basic rate at 60 bpm, dual sensor with minimal slope) and the high atrial pacing (HAP; basic rate at 70 bpm, dual sensor with optimized slope, overdrive pacing) arm. At 1 month, crossover was performed for an additional 1-month period. AV conduction time, AV block occurrence and AV conduction time adaptation during exercise were ascertained from device memories at each follow-up. Results Seventy-nine pts participated to the analysis (75 ± 8 years; 32 male; PR = 184 ± 38 ms; bundle branch block n = 12; AF history n = 36; antiarrhythmic treatment n = 53; beta-blockers n = 27; class III/Ic n = 18; both n = 8). The mean AV conduction time was significantly greater during the HAP (275 ± 51 ms) vs. LAP (263 ± 49 ms) period (p < 0.0001). Class III/Ic drugs were the only predictors of this abnormal behaviour. Degree II/III AV blocks occurred in 49 % of pts in the HAP vs. 19 % in the LAP period (p < 0.0001). Fifty-two patients (66 %) presented a lengthening of AV conduction time during exercise. Conclusion AAIR-based pacing in SD pts may induce a significant lengthening of pts’ AV conduction time, including frequent abnormal adaptation of AV conduction time during exercise
Revealing the true partitioning character of zirconium in additively manufactured polycrystalline superalloys
International audienc
- …