514 research outputs found
Revealing Network Connectivity From Dynamics
We present a method to infer network connectivity from collective dynamics in
networks of synchronizing phase oscillators. We study the long-term stationary
response to temporally constant driving. For a given driving condition,
measuring the phase differences and the collective frequency reveals
information about how the oscillators are interconnected. Sufficiently many
repetitions for different driving conditions yield the entire network
connectivity from measuring the dynamics only. For sparsely connected networks
we obtain good predictions of the actual connectivity even for formally
under-determined problems.Comment: 10 pages, 4 figure
Phase resetting of collective rhythm in ensembles of oscillators
Phase resetting curves characterize the way a system with a collective
periodic behavior responds to perturbations. We consider globally coupled
ensembles of Sakaguchi-Kuramoto oscillators, and use the Ott-Antonsen theory of
ensemble evolution to derive the analytical phase resetting equations. We show
the final phase reset value to be composed of two parts: an immediate phase
reset directly caused by the perturbation, and the dynamical phase reset
resulting from the relaxation of the perturbed system back to its dynamical
equilibrium. Analytical, semi-analytical and numerical approximations of the
final phase resetting curve are constructed. We support our findings with
extensive numerical evidence involving identical and non-identical oscillators.
The validity of our theory is discussed in the context of large ensembles
approximating the thermodynamic limit.Comment: submitted to Phys. Rev.
Detecting the harmonics of oscillations with time-variable frequencies
A method is introduced for the spectral analysis of complex noisy signals containing several frequency components. It enables components that are independent to be distinguished from the harmonics of nonsinusoidal oscillatory processes of lower frequency. The method is based on mutual information and surrogate testing combined with the wavelet transform, and it is applicable to relatively short time series containing frequencies that are time variable. Where the fundamental frequency and harmonics of a process can be identified, the characteristic shape of the corresponding oscillation can be determined, enabling adaptive filtering to remove other components and nonoscillatory noise from the signal. Thus the total bandwidth of the signal can be correctly partitioned and the power associated with each component then can be quantified more accurately. The method is first demonstrated on numerical examples. It is then used to identify the higher harmonics of oscillations in human skin blood flow, both spontaneous and associated with periodic iontophoresis of a vasodilatory agent. The method should be equally relevant to all situations where signals of comparable complexity are encountered, including applications in astrophysics, engineering, and electrical circuits, as well as in other areas of physiology and biology
Modeling of a Segmented Electrode for Desynchronizing Deep Brain Stimulation
Deep brain stimulation (DBS) is an effective therapy for medically refractory movement disorders like Parkinson’s disease. The electrodes, implanted in the target area within the human brain, generate an electric field which activates nerve fibers and cell bodies in the vicinity. Even though the different target nuclei display considerable differences in their anatomical structure, only few types of electrodes are currently commercially available. It is desirable to adjust the electric field and in particular the volume of tissue activated around the electrode with respect to the corresponding target nucleus in a such way that side effects can be reduced. Furthermore, a more selective and partial activation of the target structure is desirable for an optimal application of novel stimulation strategies, e.g., coordinated reset neuromodulation. Hence we designed a DBS electrode with a segmented design allowing a more selective activation of the target structure. We created a finite element model (FEM) of the electrode and analyzed the volume of tissue activated for this electrode design. The segmented electrode activated an area in a targeted manner, of which the dimension and position relative to the electrode could be controlled by adjusting the stimulation parameters for each electrode contact. According to our computational analysis, this directed stimulation might be superior with respect to the occurrence of side effects and it enables the application of coordinated reset neuromodulation under optimal conditions
Phase Response Curves of Coupled Oscillators
Many real oscillators are coupled to other oscillators and the coupling can
affect the response of the oscillators to stimuli. We investigate phase
response curves (PRCs) of coupled oscillators. The PRCs for two weakly coupled
phase-locked oscillators are analytically obtained in terms of the PRC for
uncoupled oscillators and the coupling function of the system. Through
simulation and analytic methods, the PRCs for globally coupled oscillators are
also discussed.Comment: 5 pages 4 figur
Noise-induced inhibitory suppression of malfunction neural oscillators
Motivated by the aim to find new medical strategies to suppress undesirable
neural synchronization we study the control of oscillations in a system of
inhibitory coupled noisy oscillators. Using dynamical properties of inhibition,
we find regimes when the malfunction oscillations can be suppressed but the
information signal of a certain frequency can be transmitted through the
system. The mechanism of this phenomenon is a resonant interplay of noise and
the transmission signal provided by certain value of inhibitory coupling.
Analyzing a system of three or four oscillators representing neural clusters,
we show that this suppression can be effectively controlled by coupling and
noise amplitudes.Comment: 10 pages, 14 figure
Multistability in the Kuramoto model with synaptic plasticity
We present a simplified phase model for neuronal dynamics with spike timing-dependent plasticity (STDP). For asymmetric, experimentally observed STDP we find multistability: a coexistence of a fully synchronized, a fully desynchronized, and a variety of cluster states in a wide enough range of the parameter space. We show that multistability can occur only for asymmetric STDP, and we study how the coexistence of synchronization and desynchronization and clustering depends on the distribution of the eigenfrequencies. We test the efficacy of the proposed method on the Kuramoto model which is, de facto, one of the sample models for a description of the phase dynamics in neuronal ensembles
Collective dynamical response of coupled oscillators with any network structure
We formulate a reduction theory that describes the response of an oscillator
network as a whole to external forcing applied nonuniformly to its constituent
oscillators. The phase description of multiple oscillator networks coupled
weakly is also developed. General formulae for the collective phase sensitivity
and the effective phase coupling between the oscillator networks are found. Our
theory is applicable to a wide variety of oscillator networks undergoing
frequency synchronization. Any network structure can systematically be treated.
A few examples are given to illustrate our theory.Comment: 4 pages, 2 figure
Fractal Fluctuations and Quantum-Like Chaos in the Brain by Analysis of Variability of Brain Waves: A New Method Based on a Fractal Variance Function and Random Matrix Theory
We developed a new method for analysis of fundamental brain waves as recorded
by EEG. To this purpose we introduce a Fractal Variance Function that is based
on the calculation of the variogram. The method is completed by using Random
Matrix Theory. Some examples are given
- …