51 research outputs found
Theory of high-order harmonic generation by an elliptically polarized laser field
We generalize a recently formulated theory of high-order harmonic generation by low-frequency laser fields [Anne L'Huillier et al., Phys. Rev. A 48, R3433 (1993)] to the case of an elliptically polarized light. Our theoretical description includes both the single-atom response and propagation. Phase matching significantly modifies the results obtained in the single-atom response. The results of our calculations, including propagation for both the intensity and polarization properties of harmonics as a function of laser ellipticity, compare very well with recent experimental observations
Angular distributions of high-order harmonics generated by a femtosecond laser
We present a systematic study of the angular distributions of high-order harmonics generated with a femtosecond Cr:LiSrAlF6 laser. We investigate the influence of different parameters, namely laser intensity, nonlinear order, nature of the gas and position of the laser focus relative to the generating medium. We show that when the laser is focused before the atomic medium, harmonics with regular spatial profiles can be generated with reasonable conversion efficiency. Their divergence does not depend directly on the nonlinear order, the intensity or even the nature of the generating gas, but rather on the region of the spectrum the considered harmonic belongs to, which is determined by the combination of the three preceding elements. When the focus is drawn closer to the medium, the distributions get increasingly distorted, becoming annular with a significant divergence for a focus right into-or after-the jet. We perform numerical simulations of the angular distributions. The simulated profiles reproduce remarkably well the experimental trends and are thus used to interpret them
High-order Harmonic-generation In Rare-gases With An Intense Short-pulse Laser
We present experimental studies of high-order harmonic generation in the rare gases performed with a short-pulse titanium sapphire laser operating at 794 nm in the 10(14)-10(15) W/cm2 range. The harmonic yields generated in neon and in argon are studied for all orders as a function of the laser intensity. They vary first rather steeply, in the cutoff region, then much more slowly in the plateau region, and, finally, they saturate when the medium gets ionized. The dependence of the high-order harmonic cutoff with the laser intensity in neon and argon is found to be lower than that predicted in single-atom theories. We observe high-order harmonics in argon and xenon (up to the 65th and 45th, respectively) at 10(15) W/cm2, which we attribute to harmonic generation from ions. We also show how the harmonic and fundamental spectra get blueshifted when the medium becomes ionized
Extreme ultraviolet interferometry measurements with high-order harmonics
We demonstrate that high-order harmonics generated by short, intense laser pulses in gases provide an interesting radiation source for extreme ultraviolet interferometry, since they are tunable, coherent, of short pulse duration, and simple to manipulate. Harmonics from the 9th to the 15th are used to measure the thickness of an aluminum layer. The 11th harmonic is used to determine the spatial distribution of the electron density of a plasma produced by a 300-ps laser. Electronic densities higher than 2-10(20) electrons/cm(3) are measured. (C) 2000 Optical Society of America. OCIS codes: 190.0190, 190.4160, 190.7110, 120.3180, 140.7240, 350.4500
Recommended from our members
Subcycle Dynamics in the Laser Ionization of Molecules
The time and momentum distributions of electron emission from a molecule during a single laser cycle are calculated by solving a two-dimensional time-dependent Schr{umlt o}dinger equation. The momentum distributions strongly depend on the orbital symmetry and orientation of the molecular axis. Field-induced internal dynamics of the molecule can shift electron emission and recollision times through a large part of the laser cycle, which leads to corresponding variations of high-harmonic emission times and to the appearance of even harmonics
XUV interferometry using high-order harmonics: Application to plasma diagnostics
In this paper, we present and compare the two different XUV interferometric techniques using high-order harmonics that have been developed so far. The first scheme is based on the interference between two spatially separated phase-locked harmonic sources while the second uses two temporally separated harmonic sources. These techniques have been applied to plasma diagnostics in feasibility experiments where electron densities up to a few 1020 e[minus sign/cm3 have been measured with a temporal resolution of 200 fs. We present the main characteristics of each technique and discuss their respective potentials and limitations
Recommended from our members
Status of the SPARC-X Project
SPARC-X is a two branch project consisting in the SPARC test facility dedicated to the development and test of critical subsystems such as high brightness photoinjector and a modular expandable undulator for SASE-FEL experiments at 500 nm with seeding, and the SPARX facility aiming at generation of high brilliance coherent radiation in the 1.5-13 nm range, based on the achieved expertise. The projects are supported by MIUR (Research Department of Italian Government) and Regione Lazio. SPARC has completed the commissioning phase of the photoinjector in November 2006. The achieved experimental results are here summarized together with the status of the second phase commissioning plans. The SPARX project is based on the generation of ultra high peak brightness electron beams at the energy of 1 and 2 GeV generating radiation in the 1.5-13 nm range. The construction is at the moment planned in two steps starting with a 1 GeV Linac. The project layout including both RF-compression and magnetic chicane techniques has been studied
- …