1,057 research outputs found

    Wetting of prototypical one- and two-dimensional systems: Thermodynamics and density functional theory.

    Get PDF
    Consider a two-dimensional capped capillary pore formed by capping two parallel planar walls with a third wall orthogonal to the two planar walls. This system reduces to a slit pore sufficiently far from the capping wall and to a single planar wall when the side walls are far apart. Not surprisingly, wetting of capped capillaries is related to wetting of slit pores and planar walls. For example, the wetting temperature of the capped capillary provides the boundary between first-order and continuous transitions to condensation. We present a numerical investigation of adsorption in capped capillaries of mesoscopic widths based on density functional theory. The fluid-fluid and fluid-substrate interactions are given by the pairwise Lennard-Jones potential. We also perform a parametric study of wetting in capped capillaries by a liquid phase by varying the applied chemical potential, temperature, and pore width. This allows us to construct surface phase diagrams and investigate the complicated interplay of wetting mechanisms specific to each system, in particular, the dependence of capillary wetting temperature on the pore width

    A review of the healthcare-management (modeling) literature published at Manufacturing and Service Operations Management

    Get PDF
    Healthcare systems throughout the world are under pressure to widen access, improve efficiency and quality of care, and reduce inequity. Achieving these conflicting goals requires innovative approaches, utilizing new technologies, data analytics, and process improvements. The operations management community has taken on this challenge: more than 10% of articles published in M&SOM in the period from 2009 to 2018 has developed analytical models that aim to inform healthcare operational decisions and improve medical decision-making. This article presents a review of the research published in M&SOM on healthcare management since its inception 20 years ago and reflects on opportunities for further research

    Architecturally diverse proteins converge on an analogous mechanism to inactivate Uracil-DNA glycosylase

    Get PDF
    Uracil-DNA glycosylase (UDG) compromises the replication strategies of diverse viruses from unrelated lineages. Virally encoded proteins therefore exist to limit, inhibit or target UDG activity for proteolysis. Viral proteins targeting UDG, such as the bacteriophage proteins ugi, and p56, and the HIV-1 protein Vpr, share no sequence similarity, and are not structurally homologous. Such diversity has hindered identification of known or expected UDG-inhibitory activities in other genomes. The structural basis for UDG inhibition by ugi is well characterized; yet, paradoxically, the structure of the unbound p56 protein is enigmatically unrevealing of its mechanism. To resolve this conundrum, we determined the structure of a p56 dimer bound to UDG. A helix from one of the subunits of p56 occupies the UDG DNA-binding cleft, whereas the dimer interface forms a hydrophobic box to trap a mechanistically important UDG residue. Surprisingly, these p56 inhibitory elements are unexpectedly analogous to features used by ugi despite profound architectural disparity. Contacts from B-DNA to UDG are mimicked by residues of the p56 helix, echoing the role of ugi’s inhibitory beta strand. Using mutagenesis, we propose that DNA mimicry by p56 is a targeting and specificity mechanism supporting tight inhibition via hydrophobic sequestration

    Asymptotic analysis of evaporating droplets

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.We consider the evaporation dynamics of a two-dimensional, partially-wetting sessile droplet of a volatile liquid in its pure vapour, which is supported on a smooth horizontal superheated substrate. Assuming that the liquid properties remain unchanged, we utilise a one-sided lubrication-type model for the evolution of the droplet thickness, which accounts for the effects of evaporation, capillarity, slip and the kinetic resistance to evaporation. We follow an asymptotic approach, which yields a set of coupled evolution equations for the droplet radius and area, estimating analytically the evaporation-modified apparent angle when evaporation effects are weak. The validity of our matching procedure is verified by numerical experiments, obtaining also an estimate for the evaporation time

    Density functional study of condensation in capped capillaries.

    Get PDF
    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at TTcwT\leqslant {{T}_{\text{cw}}} ) or continuous (at T>TcwT\gt {{T}_{\text{cw}}} ), where Tcw{{T}_{\text{cw}}} is the capillary wetting temperature. At T>TcwT \gt {{T}_{\text{cw}}} , the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies

    Belonging and Becoming in Academia: A Conceptual Framework

    Full text link
    Establishing the conceptual framework for this book as a whole, this chapter looks at the process of developing an academic identity through the lens of ‘becoming’ a scholar, with particular emphasis on the challenges facing international, part-time EdD students. This process involves not only an intellectual breakthrough, but also an emerging sense of belonging. The inner journey – which intersects with and shapes academic progress – comprises a complex set of interactions between the social groups to which we belong, our beliefs about ourselves that come about through experience, the various contexts in which we operate, the position we hold within those contexts, and the agency we exercise in responding to various pressures. In addition to exploring the relevance of this inner journey, the chapter also situates author experiences within broader educational trends facing universities and key elements of doctoral programs

    The ‘Peripheral’ Student in Academia: An Analysis

    Full text link
    Pulling together the various themes that emerged within and across the narratives, this chapter explores four broad categories of challenges and opportunities: Demands associated with being a ‘peripheral’ student and the function of social networks in developing a sense of belonging. Issues related to supervisory and other faculty relationships. Struggles related to identity, language and/or culture. The role of expert, novice and ‘impostor’ labels in internalizing a scholarly identity. Each category is unpacked, while also examining the personal characteristics and institutional features that helped the authors along the journey to becoming scholars. After each section, implications for institutional policy and planning are also discussed

    Generalized dynamical density functional theory for classical fluids and the significance of inertia and hydrodynamic interactions

    Get PDF
    We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the non-equilibrium properties of the system. We derive a general dynamical density functional theory (DDFT) which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing DDFTs and a Navier-Stokes-like equation with additional non-local terms.Comment: 5 pages, 4 figures, 4 supplementary movie files, I supplementary pd
    corecore