5,752 research outputs found
Classical capacity of the lossy bosonic channel: the exact solution
The classical capacity of the lossy bosonic channel is calculated exactly. It
is shown that its Holevo information is not superadditive, and that a
coherent-state encoding achieves capacity. The capacity of far-field,
free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version
Analytical Blowup Solutions to the Pressureless Navier-Stokes-Poisson Equations with Density-dependent Viscosity in R^N
We study the N-dimensional pressureless Navier--Stokes-Poisson equations with
density-dependent viscosity. With the extension of the blowup solutions for the
Euler-Poisson equations, the analytical blowup solutions,in radial symmetry, in
R^N are constructed.Comment: 12 Pages, more detail in the introduction to explain the validity of
the mode
Cloning of Gaussian states by linear optics
We analyze in details a scheme for cloning of Gaussian states based on linear
optical components and homodyne detection recently demonstrated by U. L.
Andersen et al. [PRL 94 240503 (2005)]. The input-output fidelity is evaluated
for a generic (pure or mixed) Gaussian state taking into account the effect of
non-unit quantum efficiency and unbalanced mode-mixing. In addition, since in
most quantum information protocols the covariance matrix of the set of input
states is not perfectly known, we evaluate the average cloning fidelity for
classes of Gaussian states with the degree of squeezing and the number of
thermal photons being only partially known.Comment: 8 pages, 7 figure
Bosonic Memory Channels
We discuss a Bosonic channel model with memory effects. It relies on a
multi-mode squeezed (entangled) environment's state. The case of lossy Bosonic
channels is analyzed in detail. We show that in the absence of input energy
constraints the memory channels are equivalent to their memoryless
counterparts. In the case of input energy constraint we provide lower and upper
bounds for the memory channel capacity.Comment: 6 pages, 2 figure
On the Relationship between Resolution Enhancement and Multiphoton Absorption Rate in Quantum Lithography
The proposal of quantum lithography [Boto et al., Phys. Rev. Lett. 85, 2733
(2000)] is studied via a rigorous formalism. It is shown that, contrary to Boto
et al.'s heuristic claim, the multiphoton absorption rate of a ``NOON'' quantum
state is actually lower than that of a classical state with otherwise identical
parameters. The proof-of-concept experiment of quantum lithography [D'Angelo et
al., Phys. Rev. Lett. 87, 013602 (2001)] is also analyzed in terms of the
proposed formalism, and the experiment is shown to have a reduced multiphoton
absorption rate in order to emulate quantum lithography accurately. Finally,
quantum lithography by the use of a jointly Gaussian quantum state of light is
investigated, in order to illustrate the trade-off between resolution
enhancement and multiphoton absorption rate.Comment: 14 pages, 7 figures, submitted, v2: rewritten in response to
referees' comments, v3: rewritten and extended, v4: accepted by Physical
Review
Sensitivity of a cavityless optomechanical system
We study the possibility of revealing a weak coherent force by using a
pendular mirror as a probe, and coupling this to a radiation field, which acts
as the meter, in a cavityless configuration. We determine the sensitivity of
such a scheme and show that the use of an entangled meter state greatly
improves the ultimate detection limit. We also compare this scheme with that
involving an optical cavity.Comment: 4 pages, RevTex file, 2 eps figures, provisionally accepted by Phys.
Rev.
High temperature cavity polaritons in epitaxial Er_2O_3 on silicon
Cavity polaritons around two Er^(3+) optical transitions are observed in microdisk resonators fabricated from epitaxial Er_2O_3 on Si(111). Using a pump-probe method, spectral anticrossings and linewidth averaging of the polariton modes are measured in the cavity transmission and luminescence at temperatures above 361 K
Measuring the quantum statistics of an atom laser beam
We propose and analyse a scheme for measuring the quadrature statistics of an
atom laser beam using extant optical homodyning and Raman atom laser
techniques. Reversal of the normal Raman atom laser outcoupling scheme is used
to map the quantum statistics of an incoupled beam to an optical probe beam. A
multimode model of the spatial propagation dynamics shows that the Raman
incoupler gives a clear signal of de Broglie wave quadrature squeezing for both
pulsed and continuous inputs. Finally, we show that experimental realisations
of the scheme may be tested with existing methods via measurements of Glauber's
intensity correlation function.Comment: 4 pages, 3 figure
Capacity of nonlinear bosonic systems
We analyze the role of nonlinear Hamiltonians in bosonic channels.
We show that the information capacity as a function of the channel energy is
increased with respect to the corresponding linear case, although only when the
energy used for driving the nonlinearity is not considered as part of the
energetic cost and when dispersive effects are negligible.Comment: 6 pages, 3 figure
- …