396 research outputs found

    Expanding the Family of Grassmannian Kernels: An Embedding Perspective

    Full text link
    Modeling videos and image-sets as linear subspaces has proven beneficial for many visual recognition tasks. However, it also incurs challenges arising from the fact that linear subspaces do not obey Euclidean geometry, but lie on a special type of Riemannian manifolds known as Grassmannian. To leverage the techniques developed for Euclidean spaces (e.g, support vector machines) with subspaces, several recent studies have proposed to embed the Grassmannian into a Hilbert space by making use of a positive definite kernel. Unfortunately, only two Grassmannian kernels are known, none of which -as we will show- is universal, which limits their ability to approximate a target function arbitrarily well. Here, we introduce several positive definite Grassmannian kernels, including universal ones, and demonstrate their superiority over previously-known kernels in various tasks, such as classification, clustering, sparse coding and hashing

    Robust Trajectory Planning for Autonomous Parafoils under Wind Uncertainty

    Get PDF
    A key challenge facing modern airborne delivery systems, such as parafoils, is the ability to accurately and consistently deliver supplies into di cult, complex terrain. Robustness is a primary concern, given that environmental wind disturbances are often highly uncertain and time-varying, coupled with under-actuated dynamics and potentially narrow drop zones. This paper presents a new on-line trajectory planning algorithm that enables a large, autonomous parafoil to robustly execute collision avoidance and precision landing on mapped terrain, even with signi cant wind uncertainties. This algorithm is designed to handle arbitrary initial altitudes, approach geometries, and terrain surfaces, and is robust to wind disturbances which may be highly dynamic throughout the terminal approach. Explicit, real-time wind modeling and classi cation is used to anticipate future disturbances, while a novel uncertainty-sampling technique ensures that robustness to possible future variation is e ciently maintained. The designed cost-to-go function enables selection of partial paths which intelligently trade o between current and reachable future states. Simulation results demonstrate that the proposed algorithm reduces the worst-case impact of wind disturbances relative to state-of-the-art approaches.Charles Stark Draper Laborator

    Characterization of a gigabit transceiver for the ATLAS inner tracker pixel detector readout upgrade

    Full text link
    We present a gigabit transceiver prototype Application Specific Integrated Circuit (ASIC), GBCR, for the ATLAS Inner Tracker (ITk) Pixel detector readout upgrade. GBCR is designed in a 65-nm CMOS technology and consists of four upstream receiver channels, a downstream transmitter channel, and an Inter-Integrated Circuit (I2C) slave. The upstream channels receive the data at 5.12 Gbps passing through 5-meter 34-American Wire Gauge (AWG) Twin-axial (Twinax) cables, equalize them, retime them with a recovered clock, and then drive an optical transmitter. The downstream channel receives the data at 2.56 Gbps from an optical receiver and drives the cable as same as the upstream channels. The jitter of the upstream channel output is measured to be 35 ps (peak-peak) when the Clock-Data Recovery (CDR) module is turned on and the jitter of the downstream channel output after the cable is 138 ps (peak-peak). The power consumption of each upstream channel is 72 mW when the CDR module is turned on and the downstream channel consumes 27 mW. GBCR survives the total ionizing dose of 200 kGy.Comment: 11 pages, 14 figure

    Fast Approximate Geodesics for Deep Generative Models

    Full text link
    The length of the geodesic between two data points along a Riemannian manifold, induced by a deep generative model, yields a principled measure of similarity. Current approaches are limited to low-dimensional latent spaces, due to the computational complexity of solving a non-convex optimisation problem. We propose finding shortest paths in a finite graph of samples from the aggregate approximate posterior, that can be solved exactly, at greatly reduced runtime, and without a notable loss in quality. Our approach, therefore, is hence applicable to high-dimensional problems, e.g., in the visual domain. We validate our approach empirically on a series of experiments using variational autoencoders applied to image data, including the Chair, FashionMNIST, and human movement data sets.Comment: 28th International Conference on Artificial Neural Networks, 201

    Measurement of shower development and its Moli\`ere radius with a four-plane LumiCal test set-up

    Get PDF
    A prototype of a luminometer, designed for a future e+e- collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moli\`ere radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.Comment: Paper published in Eur. Phys. J., includes 25 figures and 3 Table

    Advancing Development of Environmental Barrier Coatings Resistant to Attack by Molten Calcium-Magnesium-Aluminosilicate (CMAS)

    Get PDF
    Ceramic matrix composites (CMCs) are a leading material system to replace metal-based parts in the hot-section of air-breathing turbine engines to improve fuel efficiency in aircraft engines. CMCs have higher temperature capabilities and lower density compared with traditional metallic structural materials. However, silicon-based CMCs are susceptible to oxidation in the harsh combustion environment encountered in turbine engines. Consequently, environmental barrier coatings (EBCs) are being developed to protect CMC components to improve durability and extend service life of CMCs. Sand, volcanic ash and other particulate debris, which are generally comprised of calcium-magnesium-aluminosilicate (CMAS) and other trace oxides, are routinely ingested by aircraft engines. At temperatures above 1200C, CMAS particulates melt. Near target operating temperatures (~1500C) of future CMC-based aircraft engines, molten CMAS behaves like a viscous melt that can infiltrate and chemically interact with protective coatings. These interactions can cause premature failure of the EBC system and ultimately the overall CMC engine component. Degradation of candidate EBC materials by molten CMAS will be presented with a focus on recent work, as well as methods of evaluating the complex high-temperature materials interactions, underway at NASA Glenn Research Center

    Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector

    Get PDF
    Detector-plane prototypes of the very forward calorimetry of a future detector at an e+e- collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.Comment: 25 pages, 32 figures, revised version following comments from referee

    Gravity Currents in Aquatic Canopies

    Get PDF
    A lock exchange experiment is used to investigate the propagation of gravity currents through a random array of rigid, emergent cylinders which represents a canopy of aquatic plants. As canopy drag increases, the propagating front varies from the classic profile of an unobstructed gravity current to a triangular profile. Unlike the unobstructed lock exchange, the gravity current in the canopy decelerates with time as the front lengthens. Two drag-dominated regimes associated with linear and nonlinear drag laws are identified. The theoretical expression for toe velocity is supported by observed values. Empirical criteria are developed to predict the current regime from the cylinder Reynolds number and the array density.National Science Foundation (U.S.) (grant EAR0309188)National Science Foundation (U.S.) (grant EAR0509658)Massachusetts Institute of Technology (Presidential Graduate Fellowship

    ECFA Detector R&D Panel, Review Report

    Full text link
    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 103^{-3} at the ILC and 102^{-2} at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
    corecore