21,772 research outputs found
Assimilation via prices or quantities? Sources of immigrant earnings growth in Australia, Canada and the United States
Using 1980/81 and 1990/91 census data from Australia, Canada, and the United States, we
estimate the effects of time in the destination country on male immigrants’ wages,
employment, and earnings. We find that total earnings assimilation is greatest in the United
States and least in Australia. Employment assimilation explains all of the earnings progress
experienced by Australian immigrants, whereas wage assimilation plays the dominant role in
the United States, and Canada falls in-between. We argue that relatively inflexible wages and
generous unemployment insurance in countries like Australia may cause assimilation to occur
along the “quantity” rather than the price dimension
Spin Structure of the Nucleon - Status and Recent Results
After the initial discovery of the so-called "spin crisis in the parton
model" in the 1980's, a large set of polarization data in deep inelastic
lepton-nucleon scattering was collected at labs like SLAC, DESY and CERN. More
recently, new high precision data at large x and in the resonance region have
come from experiments at Jefferson Lab. These data, in combination with the
earlier ones, allow us to study in detail the polarized parton densities, the
Q^2 dependence of various moments of spin structure functions, the duality
between deep inelastic and resonance data, and the nucleon structure in the
valence quark region. Together with complementary data from HERMES, RHIC and
COMPASS, we can put new limits on the flavor decomposition and the gluon
contribution to the nucleon spin. In this report, we provide an overview of our
present knowledge of the nucleon spin structure and give an outlook on future
experiments. We focus in particular on the spin structure functions g_1 and g_2
of the nucleon and their moments.Comment: 69 pages, 46 figures. Report to be published in "Progress in Particle
and Nuclear Physics". v2 with added references and minor edit
The Skylab concentrated atmospheric radiation project
The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra
Polarization-controlled single photons
Vacuum-stimulated Raman transitions are driven between two magnetic substates
of a rubidium-87 atom strongly coupled to an optical cavity. A magnetic field
lifts the degeneracy of these states, and the atom is alternately exposed to
laser pulses of two different frequencies. This produces a stream of single
photons with alternating circular polarization in a predetermined
spatio-temporal mode. MHz repetition rates are possible as no recycling of the
atom between photon generations is required. Photon indistinguishability is
tested by time-resolved two-photon interference.Comment: 4 pages, 3 figure
Morphological stability of electromigration-driven vacancy islands
The electromigration-induced shape evolution of two-dimensional vacancy
islands on a crystal surface is studied using a continuum approach. We consider
the regime where mass transport is restricted to terrace diffusion in the
interior of the island. In the limit of fast attachment/detachment kinetics a
circle translating at constant velocity is a stationary solution of the
problem. In contrast to earlier work [O. Pierre-Louis and T.L. Einstein, Phys.
Rev. B 62, 13697 (2000)] we show that the circular solution remains linearly
stable for arbitrarily large driving forces. The numerical solution of the full
nonlinear problem nevertheless reveals a fingering instability at the trailing
end of the island, which develops from finite amplitude perturbations and
eventually leads to pinch-off. Relaxing the condition of instantaneous
attachment/detachment kinetics, we obtain non-circular elongated stationary
shapes in an analytic approximation which compares favorably to the full
numerical solution.Comment: 12 page
A nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution
We discuss a nonlinear model for the relaxation by energy redistribution
within an isolated, closed system composed of non-interacting identical
particles with energy levels e_i with i=1,2,...,N. The time-dependent
occupation probabilities p_i(t) are assumed to obey the nonlinear rate
equations tau dp_i/dt=-p_i ln p_i+ alpha(t)p_i-beta(t)e_ip_i where alpha(t) and
beta(t) are functionals of the p_i(t)'s that maintain invariant the mean energy
E=sum_i e_ip_i(t) and the normalization condition 1=sum_i p_i(t). The entropy
S(t)=-k sum_i p_i(t) ln p_i(t) is a non-decreasing function of time until the
initially nonzero occupation probabilities reach a Boltzmann-like canonical
distribution over the occupied energy eigenstates. Initially zero occupation
probabilities, instead, remain zero at all times. The solutions p_i(t) of the
rate equations are unique and well-defined for arbitrary initial conditions
p_i(0) and for all times. Existence and uniqueness both forward and backward in
time allows the reconstruction of the primordial lowest entropy state. The time
evolution is at all times along the local direction of steepest entropy ascent
or, equivalently, of maximal entropy generation. These rate equations have the
same mathematical structure and basic features of the nonlinear dynamical
equation proposed in a series of papers ended with G.P.Beretta, Found.Phys.,
17, 365 (1987) and recently rediscovered in S. Gheorghiu-Svirschevski,
Phys.Rev.A, 63, 022105 and 054102 (2001). Numerical results illustrate the
features of the dynamics and the differences with the rate equations recently
considered for the same problem in M.Lemanska and Z.Jaeger, Physica D, 170, 72
(2002).Comment: 11 pages, 7 eps figures (psfrag use removed), uses subeqn, minor
revisions, accepted for Physical Review
- …