295 research outputs found
Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors
Additional file 6: Figure S1. Derivation of iPS cells in defined culture conditions
Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors
<p>Abstract</p> <p>Background</p> <p>Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed.</p> <p>Methods</p> <p>Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells <it>EGFR </it>amplification analysis, LOH/MSI analysis, and <it>P53 </it>nucleotide sequence analysis were performed.</p> <p>Results</p> <p><it>In vitro </it>differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum.</p> <p>Conclusion</p> <p>Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present <it>in vitro </it>multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.</p
Successful elimination of non-neural cells and unachievable elimination of glial cells by means of commonly used cell culture manipulations during differentiation of GFAP and SOX2 positive neural progenitors (NHA) to neuronal cells
<p>Abstract</p> <p>Background</p> <p>Although extensive research has been performed to control differentiation of neural stem cells – still, the response of those cells to diverse cell culture conditions often appears to be random and difficult to predict. To this end, we strived to obtain stabilized protocol of NHA cells differentiation – allowing for an increase in percentage yield of neuronal cells.</p> <p>Results</p> <p>Uncommitted GFAP and SOX2 positive neural progenitors – so-called, Normal Human Astrocytes (NHA) were differentiated in different environmental conditions to: only neural cells consisted of neuronal [MAP2+, GFAP-] and glial [GFAP+, MAP2-] population, non-neural cells [CD44+, VIMENTIN+, FIBRONECTIN+, MAP2-, GFAP-, S100β-, SOX2-], or mixture of neural and non-neural cells.</p> <p>In spite of successfully increasing the percentage yield of glial and neuronal <it>vs</it>. non-neural cells by means of environmental changes, we were not able to increase significantly the percentage of neuronal (GABA-ergic and catecholaminergic) over glial cells under several different cell culture testing conditions. Supplementing serum-free medium with several growth factors (SHH, bFGF, GDNF) did not radically change the ratio between neuronal and glial cells – i.e., 1,1:1 in medium without growth factors and 1,4:1 in medium with GDNF, respectively.</p> <p>Conclusion</p> <p>We suggest that biotechnologists attempting to enrich <it>in vitro </it>neural cell cultures in one type of cells – such as that required for transplantology purposes, should consider the strong limiting influence of intrinsic factors upon extracellular factors commonly tested in cell culture conditions.</p
cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer
<p>Abstract</p> <p>Background</p> <p>Recently published data showed discrepancies beteween <it>P53 </it>cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers.</p> <p>Methods</p> <p>To this end, we analyzed 23 colorectal cancers for <it>P53 </it>mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry.</p> <p>Results</p> <p>We found <it>P53 </it>gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of <it>P53 </it>mRNA was present in samples with and without <it>P53 </it>mutations.</p> <p>Conclusion</p> <p>In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated <it>P53 </it>mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without <it>P53 </it>mutation (normal cells and cells showing <it>K-RAS </it>and/or <it>APC </it>but not <it>P53 </it>mutation) in samples presenting <it>P53 </it>mutation; 3, heterozygous or hemizygous mutations of <it>P53 </it>gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in <it>P53 </it>cDNA and DNA sequencing analysis.</p
Elimination of wild-type P53 mRNA in glioblastomas showing heterozygous mutations of P53
We screened 50 glioblastomas for P53 mutations. Five glioblastomas showed heterozygous mutations, while three were putatively heterozygous. Six of these eight glioblastomas showed elimination of wild-type P53 mRNA. These results strongly suggest that some sort of mechanism(s) favouring mutated over wild-type P53 mRNA exists in glioblastoma cells with heterozygous mutations of this gene
Primary skin fibroblasts as a model of Parkinson's disease
Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues
Glioblastoma-derived spheroid cultures as an experimental model for analysis of EGFR anomalies
Glioblastoma cell cultures in vitro are frequently used for investigations on the biology of tumors or new therapeutic approaches. Recent reports have emphasized the importance of cell culture type for maintenance of tumor original features. Nevertheless, the ability of GBM cells to preserve EGFR overdosage in vitro remains controversial. Our experimental approach was based on quantitative analysis of EGFR gene dosage in vitro both at DNA and mRNA level. Real-time PCR data were verified with a FISH method allowing for a distinction between EGFR amplification and polysomy 7. We demonstrated that EGFR amplification accompanied by EGFRwt overexpression was maintained in spheroids, but these phenomena were gradually lost in adherent culture. We noticed a rapid decrease of EGFR overdosage already at the initial stage of cell culture establishment. In contrast to EGFR amplification, the maintenance of polysomy 7 resulted in EGFR locus gain and stabilization even in long-term adherent culture in serum presence. Surprisingly, the EGFRwt expression pattern did not reflect the latter phenomenon and we observed no overexpression of the tested gene. Moreover, quantitative analysis demonstrated that expression of the truncated variant of receptor—EGFRvIII was preserved in GBM-derived spheroids at a level comparable to the initial tumor tissue. Our findings are especially important in the light of research using glioblastoma culture as the experimental model for testing novel EGFR-targeted therapeutics in vitro, with special emphasis on the most common mutated form of receptor—EGFRvIII
Assessment of Epidermal Growth Factor Receptor (EGFR) expression in human meningioma
<p>Abstract</p> <p>Purpose</p> <p>This study explores whether meningioma expresses epidermal growth factor receptor (EGFR) and determines if there is a correlation between the WHO grade of this tumor and the degree of EGFR expression.</p> <p>Methods</p> <p>Following institutional review board approval, 113 meningioma specimens from 89 patients were chosen. Of these, 85 were used for final analysis. After a blinded review, immunohistochemical stains for EGFR were performed. Staining intensity (SI) was scored on a scale 0-3 (from no staining to strong staining). Staining percentage of immunoreactive cells (SP) was scored 1-5 (from the least to the maximum percent of the specimen staining). Immunohistochemical score (IHS) was calculated as the product of SI and SP.</p> <p>Results</p> <p>Eighty-five samples of meningioma were classified in accordance with World Health Organization (WHO) criteria: benign 57/85 (67%), atypical 23/85 (27%), and malignant 5/85 (6%). The majority of samples demonstrated a moderate SI for EGFR. IHS for EGFR demonstrated a significant association between SI and histopathologic subtype. Also, there was a correlation between the SP and histopathologic subtype (p = 0.029). A significant association was determined when the benign and the atypical samples were compared to the malignant with respect to the SP (p = 0.009). While there was a range of the IHS for the benign and the atypical histologic subtypes, malignant tumors exhibited the lowest score and were statistically different from the benign and the atypical specimens (p < 0.001).</p> <p>Conclusions</p> <p>To our knowledge, this represents the largest series of meningioma samples analyzed for EGFR expression reported in the literature. EGFR expression is greatest in benign meningiomas and may serve a potential target for therapeutic intervention with selective EGFR inhibitors.</p
- …