299 research outputs found

    Process and design considerations for high-efficiency solar cells

    Get PDF
    This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed

    Silicon dendritic web material

    Get PDF
    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined

    Silicon materials task of the low cost solar array project, part 2

    Get PDF
    Purity requirements for solar cell grade silicon material was developed and defined by evaluating the effects of specific impurities and impurity levels on the performance of silicon solar cells. Also, data was generated forming the basis for cost-tradeoff analyses of silicon solar cell material. Growth, evaluation, solar cell fabrication and testing was completed for the baseline boron-doped Czochralski material. Measurements indicate Cn and Mn seriously degrade cell performance, while neither Ni nor Cu produce any serious reduction in cell efficiency

    Development of high efficiency solar cells on silicon web

    Get PDF
    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated

    Development of high-efficiency solar cells on silicon web

    Get PDF
    Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated

    Disentangling the Unparticles with polarized beams at e+e- colliders

    Full text link
    Recently proposed idea of unparticles arising due to a scale invariant sector in the theory can give rise to effective operators with different Lorentz structures. We show that by using the different polarization options at the future linear e+e- colliders, the nature of these effective operators can be easily understood. The unique feature of a complex phase in the propagator of the unparticle can also be understood uniquely for the different spins by exploiting the initial beam polarizations at the International Linear Collider (ILC).Comment: Minor additions to text. References added. To appear in Phys. Rev.

    Unitarity constraints on the stabilized Randall-Sundrum scenario

    Get PDF
    Recently proposed stabilization mechanism of the Randall-Sundrum metric gives rise to a scalar radion, which couples universally to matter with a weak interaction (1\simeq 1 TeV) scale. Demanding that gauge boson scattering as described by the effective low enerrgy theory be unitary upto a given scale leads to significant constraints on the mass of such a radion.Comment: 10 page Latex 2e file including 4 postscript figures. Accepted in Journal of Physics

    Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    Get PDF
    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4)

    Phase 2 of the array automated assembly task for the low cost solar array project

    Get PDF
    The process sequence for the fabrication of dendritic web silicon into solar panels was modified to include aluminum back surface field formation. Plasma etching was found to be a feasible technique for pre-diffusion cleaning of the web. Several contacting systems were studied. The total plated Pd-Ni system was not compatible with the process sequence; however, the evaporated TiPd-electroplated Cu system was shown stable under life testing. Ultrasonic bonding parameters were determined for various interconnect and contact metals but the yield of the process was not sufficiently high to use for module fabrication at this time. Over 400 solar cells were fabricated according to the modified sequence. No sub-process incompatibility was seen. These cells were used to fabricate four demonstration modules. A cost analysis of the modified process sequence resulted in a selling price of $0.75/peak watt
    corecore