21,517 research outputs found

    The Redner - Ben-Avraham - Kahng cluster system

    Get PDF
    We consider a coagulation model first introduced by Redner, Ben-Avraham and Krapivsky in [Redner, Ben-Avraham, Kahng: Kinetics of 'cluster eating', J. Phys. A: Math. Gen., 20 (1987), 1231-1238], the main feature of which is that the reaction between a j-cluster and a k-cluster results in the creation of a |j-k|-cluster, and not, as in Smoluchowski's model, of a (j+k)-cluster. In this paper we prove existence and uniqueness of solutions under reasonably general conditions on the coagulation coefficients, and we also establish differenciability properties and continuous dependence of solutions. Some interesting invariance properties are also proved. Finally, we study the long-time behaviour of solutions, and also present a preliminary analysis of their scaling behaviour.Comment: 24 pages. 2 figures. Dedicated to Carlos Rocha and Luis Magalhaes on the occasion of their sixtieth birthday

    Flux-tube geometry and solar wind speed during an activity cycle

    Full text link
    The solar wind speed at 1 AU shows variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal wind speed in a magnetic flux-tube is anti-correlated with its expansion ratio, which motivated the definition of widely-used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad-hoc corrections. A predictive law based solely on physical principles is still missing. We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. We use MHD simulations of the corona and wind coupled to a dynamo model to provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Our study confirms that the terminal speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the locations of these flows during solar minima. Overall, the actual asymptotic wind speeds attained are also strongly dependent on field-line inclination and magnetic field amplitude at the foot-points. We suggest ways of including these parameters on future predictive scaling-laws for the solar wind speed.Comment: Accepted for publicaton on Astronomy & Astrophysic

    The Redner - Ben-Avraham - Kahng coagulation system with constant coefficients: the finite dimensional case

    Get PDF
    We study the behaviour as t→∞t\to\infty of solutions (cj(t))(c_j(t)) to the Redner--Ben-Avraham--Kahng coagulation system with positive and compactly supported initial data, rigorously proving and slightly extending results originally established in [4] by means of formal arguments.Comment: 13 pages, 1 figur

    Critical current of a superconductor measured via injection of spin polarized carriers

    Full text link
    In this paper we report a direct evidence of the suppression of critical current due to pair-breaking in a superconducting micro-bridge when the measurement is carried out by injecting spin polarised carriers instead of normal electrons. A thin layer of La0.7Ca0.3MnO3 was used as the source of spin polarised carriers. The micro-bridge was formed on the DyBa2Cu3O7-d thin film by photo-lithographic techniques. The design of our spin-injection device allowed us to inject spin-polarised carriers from the La0.7Ca0.3MnO3 layer directly to the DyBa2Cu3O7- d micro-bridge (without any insulating buffer layer) making it possible to measure the critical current when polarised electrons alone are injected into the superconductor. Our results confirm the role of polarised carriers in breaking the Cooper pairs in the superconductor.Comment: 8 pages, 4 figure

    Tanaka-Tagoshi Parametrization of post-1PN Spin-Free Gravitational Wave Chirps: Equispaced and Cardinal Interpolated Lattices For First Generation Interferometric Antennas

    Full text link
    The spin-free binary-inspiral parameter-space introduced by Tanaka and Tagoshi to construct a uniformly-spaced lattice of templates at (and possibly beyond) 2.5PN2.5PN order is shown to work for all first generation interferometric gravitational wave antennas. This allows to extend the minimum-redundant cardinal interpolation techniques of the correlator bank developed by the Authors to the highest available order PN templates. The total number of 2PN templates to be computed for a minimal match Γ=0.97\Gamma=0.97 is reduced by a factor 4, as in the 1PN case.Comment: 9 pages, 8 figures, 3 tables, accepted for publication in Phys. Rev.

    A phenomenological model for magnetoresistance in granular polycrystalline colossal magnetoresistive materials: the role of spin polarised tunnelling at the grain boundaries

    Full text link
    It has been observed that in bulk and polycrystalline thin films of collossal magnetoresistive (CMR) materials the magnetoresistance follows a different behaviour compared to single crystals or single crystalline films below the ferromagnetic transition temperature Tc. In this paper we develop a phenomenological model to explain the magnetic field dependence of resistance in granular CMR materials taking into account the spin polarised tunnelling at the grain boundaries. The model has been fitted to two systems, namely, La0.55Ho0.15Sr0.3MnO3 and La1.8Y0.5Ca0.7Mn2O7. From the fitted result we have separated out, in La0.55Ho0.15Sr0.3MnO3, the intrinsic contribution from the intergranular contribution to the magnetoresistance coming from spin polarised tunnelling at the grain boundaries. It is observed that the temperature dependence of the intrinsic contribution to the magnetoresistance in La0.55Ho0.15Sr0.3MnO3 follows the prediction of double exchange model for all values of field.Comment: 14 pages + 5 figures, postscript (to appear in Journal of Applied Physics

    Thermal and non-thermal emission from reconnecting twisted coronal loops

    Full text link
    Twisted magnetic fields should be ubiquitous in flare-producing active regions where the magnetic fields are strongly non-potential. It has been shown that reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops. This scenario can be an alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. We use a combination of MHD simulations and test-particle methods, which describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us estimate thermal X-ray emission intensities. The electric and magnetic fields obtained are used to calculate electron trajectories using the guiding-centre approximation. These trajectories combined with the MHD plasma density distributions let us deduce synthetic HXR bremsstrahlung intensities. Our simulations emphasise that the geometry of the emission patterns produced by hot plasma in flaring twisted coronal loops can differ from the actual geometry of the underlying magnetic fields. The twist angles revealed by the emission threads (SXR) are consistently lower than the field-line twist present at the onset of the kink-instability. HXR emission due to the interaction of energetic electrons with the stratified background are concentrated at the loop foot-points in these simulations, even though the electrons are accelerated everywhere within the coronal volume of the loop. The maximum of HXR emission consistently precedes that of SXR emission, with the HXR light-curve being approximately proportional to the temporal derivative of the SXR light-curve.Comment: (accepted for publication on A&A

    Large classical universes emerging from quantum cosmology

    Full text link
    It is generally believed that one cannot obtain a large Universe from quantum cosmological models without an inflationary phase in the classical expanding era because the typical size of the Universe after leaving the quantum regime should be around the Planck length, and the standard decelerated classical expansion after that is not sufficient to enlarge the Universe in the time available. For instance, in many quantum minisuperspace bouncing models studied in the literature, solutions where the Universe leave the quantum regime in the expanding phase with appropriate size have negligible probability amplitude with respect to solutions leaving this regime around the Planck length. In this paper, I present a general class of moving gaussian solutions of the Wheeler-DeWitt equation where the velocity of the wave in minisuperspace along the scale factor axis, which is the new large parameter introduced in order to circumvent the abovementioned problem, induces a large acceleration around the quantum bounce, forcing the Universe to leave the quantum regime sufficiently big to increase afterwards to the present size, without needing any classical inflationary phase in between, and with reasonable relative probability amplitudes with respect to models leaving the quantum regime around the Planck scale. Furthermore, linear perturbations around this background model are free of any transplanckian problem.Comment: 8 pages, 1 figur
    • 

    corecore