64,211 research outputs found

    Halo ratio from ground based all-sky imaging

    Get PDF
    © Author(s) 2019.The halo ratio (HR) is a quantitative measure characterizing the occurrence of the 22 halo peak associated with cirrus. We propose to obtain it from an approximation to the scattering phase function (SPF) derived from allsky imaging. Ground-based fisheye cameras are used to retrieve the SPF by implementing the necessary image transformations and corrections. These consist of geometric camera characterization by utilizing positions of known stars in a camera image, transforming the images from the zenithcentred to the light-source-centred system of coordinates and correcting for the air mass and for vignetting, the latter using independent measurements from a sun photometer. The SPF is then determined by averaging the image brightness over the azimuth angle and the HR by calculating the ratio of the SPF at two scattering angles in the vicinity of the 22° halo peak. In variance from previous suggestions we select these angles to be 20 and 23°, on the basis of our observations. HR time series have been obtained under various cloud conditions, including halo cirrus, non-halo cirrus and scattered cumuli. While the HR measured in this way is found to be sensitive to the halo status of cirrus, showing values typically > 1 under halo-producing clouds, similar HR values, mostly artefacts associated with bright cloud edges, can also be occasionally observed under scattered cumuli. Given that the HR is an ice cloud characteristic, a separate cirrus detection algorithm is necessary to screen out non-ice clouds before deriving reliable HR statistics. Here we propose utilizing sky brightness temperature from infrared radiometry: Both its absolute value and the magnitude of fluctuations obtained through detrended fluctuation analysis. The brightness temperature data permit the detection of cirrus in most but not all instances.Peer reviewe

    Full-scale testing of an Ogee tip rotor

    Get PDF
    Full scale tests were utilized to investigate the effect of the ogee tip on helicopter rotor acoustics, performance, and loads. Two facilities were used: the Langley whirl tower and a UH-1H helicopter. The text matrix for hover on the whirl tower involved thrust values from 0 to 44 480 N (10,000 lb) at several tip Mach numbers for both standard and Ogee rotors. The full scale testing on the UH-1H encompassed the major portion of the flight envelope for that aircraft. Both near field acoustic measurements and far field flyover data were obtained for both the ogee and standard rotors. Data analysis of the whirl tower test shows that the ogee tip does significantly diffuse the tip vortex while providing some improvement in hover performance at low and moderate thrust coefficients. Flight testing of both rotors indicates that the strong impulsive noise signature of the standard rotor can be reduced with the ogee rotor. Analysis of the spectra indicates a reduction in energy in the 250 Hz and 1000 Hz range for the ogee rotor. Forward flight performance was significantly improved with the ogee configuration for a large number of flight conditions. Further, rotor control loads were reduced through use of this advanced tip rotor

    Computer and photogrammetric general land use study of central north Alabama

    Get PDF
    The object of this report is to acquaint potential users with two computer programs, developed at NASA, Marshall Space Flight Center. They were used in producing a land use survey and maps of central north Alabama from Earth Resources Technology Satellite (ERTS) digital data. The report describes in detail the thought processes and analysis procedures used from the initiation of the land use study to its completion, as well as a photogrammetric study that was used in conjunction with the computer analysis to produce similar land use maps. The results of the land use demonstration indicate that, with respect to computer time and cost, such a study may be economically and realistically feasible on a statewide basis

    Assessment of Neuropsychological Trajectories in Longitudinal Population-Based Studies of Children

    Get PDF
    This paper provides a strategy for the assessment of brain function in longitudinal cohort studies of children. The proposed strategy invokes both domain-specific and omnibus intelligence test approaches. In order to minimise testing burden and practice effects, the cohort is divided into four groups with one-quarter tested at 6-monthly intervals in the 0–2-year age range (at ages 6 months, 1.0, 1.5 and 2.0 years) and at annual intervals from ages 3–20 (one-quarter of the children at age 3, another at age 4, etc). This strategy allows investigation of cognitive development and of the relationship between environmental influences and development at each age. It also allows introduction of new domains of function when age-appropriate. As far as possible, tests are used that will provide a rich source of both longitudinal and cross-sectional data. The testing strategy allows the introduction of novel tests and new domains as well as piloting of tests when the test burden is relatively light. In addition to the recommended tests for each age and domain, alternative tests are described. Assessment methodology and knowledge about child cognitive development will change over the next 20 years, and strategies are suggested for altering the proposed test schedule as appropriate

    Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method

    Full text link
    We outline how the coupled cluster method of microscopic quantum many-body theory can be utilized in practice to give highly accurate results for the ground-state properties of a wide variety of highly frustrated and strongly correlated spin-lattice models of interest in quantum magnetism, including their quantum phase transitions. The method itself is described, and it is shown how it may be implemented in practice to high orders in a systematically improvable hierarchy of (so-called LSUBmm) approximations, by the use of computer-algebraic techniques. The method works from the outset in the thermodynamic limit of an infinite lattice at all levels of approximation, and it is shown both how the "raw" LSUBmm results are themselves generally excellent in the sense that they converge rapidly, and how they may accurately be extrapolated to the exact limit, mm \rightarrow \infty, of the truncation index mm, which denotes the {\it only} approximation made. All of this is illustrated via a specific application to a two-dimensional, frustrated, spin-half J1XXZJ^{XXZ}_{1}--J2XXZJ^{XXZ}_{2} model on a honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange couplings J1>0J_{1}>0 and J2κJ1>0J_{2} \equiv \kappa J_{1} > 0, respectively, where both interactions are of the same anisotropic XXZXXZ type. We show how the method can be used to determine the entire zero-temperature ground-state phase diagram of the model in the range 0κ10 \leq \kappa \leq 1 of the frustration parameter and 0Δ10 \leq \Delta \leq 1 of the spin-space anisotropy parameter. In particular, we identify a candidate quantum spin-liquid region in the phase space

    Spin-1/2 J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice

    Full text link
    Using the coupled cluster method (CCM) we study the full (zero-temperature) ground-state (GS) phase diagram of a spin-half (s=1/2s=1/2) J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice. Each site of the square lattice has 4 nearest-neighbour exchange bonds of strength J1J_{1} and 2 next-nearest-neighbour (diagonal) bonds of strength J2J_{2}. The J2J_{2} bonds are arranged so that the basic square plaquettes in alternating columns have either both or no J2J_{2} bonds included. The classical (ss \rightarrow \infty) version of the model has 4 collinear phases when J1J_{1} and J2J_{2} can take either sign. Three phases are antiferromagnetic (AFM), showing so-called N\'{e}el, double N\'{e}el and double columnar striped order respectively, while the fourth is ferromagnetic. For the quantum s=1/2s=1/2 model we use the 3 classical AFM phases as CCM reference states, on top of which the multispin-flip configurations arising from quantum fluctuations are incorporated in a systematic truncation hierarchy. Calculations of the corresponding GS energy, magnetic order parameter and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order are thus carried out numerically to high orders of approximation and then extrapolated to the (exact) physical limit. We find that the s=1/2s=1/2 model has 5 phases, which correspond to the four classical phases plus a new quantum phase with plaquette VBC order. The positions of the 5 quantum critical points are determined with high accuracy. While all 4 phase transitions in the classical model are first order, we find strong evidence that 3 of the 5 quantum phase transitions in the s=1/2s=1/2 model are of continuous deconfined type

    A frustrated spin-1/2 Heisenberg antiferromagnet on a chevron-square lattice

    Full text link
    The coupled cluster method (CCM) is used to study the zero-temperature properties of a frustrated spin-half (s=12s={1}{2}) J1J_{1}--J2J_{2} Heisenberg antiferromagnet (HAF) on a 2D chevron-square lattice. Each site on an underlying square lattice has 4 nearest-neighbor exchange bonds of strength J1>0J_{1}>0 and 2 next-nearest-neighbor (diagonal) bonds of strength J2xJ1>0J_{2} \equiv x J_{1}>0, with each square plaquette having only one diagonal bond. The diagonal bonds form a chevron pattern, and the model thus interpolates smoothly between 2D HAFs on the square (x=0x=0) and triangular (x=1x=1) lattices, and also extrapolates to disconnected 1D HAF chains (xx \to \infty). The classical (ss \to \infty) version of the model has N\'{e}el order for 0<x<xcl0 < x < x_{{\rm cl}} and a form of spiral order for xcl<x<x_{{\rm cl}} < x < \infty, where xcl=12x_{{\rm cl}} = {1}{2}. For the s=12s={1}{2} model we use both these classical states, as well as other collinear states not realized as classical ground-state (GS) phases, as CCM reference states, on top of which the multispin-flip configurations resulting from quantum fluctuations are incorporated in a systematic truncation scheme, which we carry out to high orders and extrapolate to the physical limit. We calculate the GS energy, GS magnetic order parameter, and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order, including plaquette and two different dimer forms. We find that the s=12s={1}{2} model has two quantum critical points, at xc10.72(1)x_{c_{1}} \approx 0.72(1) and xc21.5(1)x_{c_{2}} \approx 1.5(1), with N\'{e}el order for 0<x<xc10 < x < x_{c_{1}}, a form of spiral order for xc1<x<xc2x_{c_{1}} < x < x_{c_{2}} that includes the correct three-sublattice 120120^{\circ} spin ordering for the triangular-lattice HAF at x=1x=1, and parallel-dimer VBC order for xc2<x<x_{c_{2}} < x < \infty

    Internal dissipation of a polymer

    Full text link
    The dynamics of flexible polymer molecules are often assumed to be governed by hydrodynamics of the solvent. However there is considerable evidence that internal dissipation of a polymer contributes as well. Here we investigate the dynamics of a single chain in the absence of solvent to characterize the nature of this internal friction. We model the chains as freely hinged but with localized bond angles and 3-fold symmetric dihedral angles. We show that the damping is close but not identical to Kelvin damping, which depends on the first temporal and second spatial derivative of monomer position. With no internal potential between monomers, the magnitude of the damping is small for long wavelengths and weakly damped oscillatory time dependent behavior is seen for a large range of spatial modes. When the size of the internal potential is increased, such oscillations persist, but the damping becomes larger. However underdamped motion is present even with quite strong dihedral barriers for long enough wavelengths.Comment: 6 pages, 8 figure
    corecore