107 research outputs found
Fine mapping a locus controlling leg morphology in the domestic dog
The domestic dog offers a remarkable opportunity to disentangle the genetics of complex phenotypes. Here, we explore a locus, previously identified in the Portuguese water dog (PWD), associated with PC2, a morphological principal component characterized as leg width versus leg length. The locus was initially mapped to a region of 26 Mb on canine chromosome 12 (CFA12) following a genome-wide scan. Subsequent and extensive genotyping of single-nucleotide polymorphisms (SNPs) and haplotype analysis in both the PWD and selected breeds representing phenotypic extremes of PC2 reduced the region from 26 Mb to 500 kb. The proximity of the critical interval to two collagen genes suggests that the phenotype may be controlled by cis-acting mechanisms
Extensive Gains and Losses of Olfactory Receptor Genes in Mammalian Evolution
Odor perception in mammals is mediated by a large multigene family of olfactory receptor (OR) genes. The number of OR genes varies extensively among different species of mammals, and most species have a substantial number of pseudogenes. To gain some insight into the evolutionary dynamics of mammalian OR genes, we identified the entire set of OR genes in platypuses, opossums, cows, dogs, rats, and macaques and studied the evolutionary change of the genes together with those of humans and mice. We found that platypuses and primates have <400 functional OR genes while the other species have 800–1,200 functional OR genes. We then estimated the numbers of gains and losses of OR genes for each branch of the phylogenetic tree of mammals. This analysis showed that (i) gene expansion occurred in the placental lineage each time after it diverged from monotremes and from marsupials and (ii) hundreds of gains and losses of OR genes have occurred in an order-specific manner, making the gene repertoires highly variable among different orders. It appears that the number of OR genes is determined primarily by the functional requirement for each species, but once the number reaches the required level, it fluctuates by random duplication and deletion of genes. This fluctuation seems to have been aided by the stochastic nature of OR gene expression
Canine Morphology: Hunting for Genes and Tracking Mutations
In this essay, Abigail Shearin and Elaine Ostrander discuss the proposed genomic mechanisms for the extraordinary level of phenotypic variation observed in the domestic dog and the evidence detailing the variants responsible for the many shapes, sizes, textures, and colors of man's best friend
Dlk/ZIP kinase-induced apoptosis in human medulloblastoma cells: requirement of the mitochondrial apoptosis pathway
Dlk/ZIP kinase is a member of the Death Associated Protein (DAP) kinase family of pro-apoptotic serine/threonine kinases that have been implicated in regulation of apoptosis and tumour suppression. Expression of both Dlk/ZIP kinase and its interaction partner Par-4 is maintained in four medulloblastoma cell lines investigated, whereas three of seven neuroblastoma cell lines have lost expression of Par-4. Overexpression of a constitutively pro-apoptotic deletion mutant of Dlk/ZIP kinase induced significant apoptosis in D283 medulloblastoma cells. Cell death was characterized by apoptotic membrane blebbing, and a late stage during which the cells had ceased blebbing and were drastically shrunken or disrupted into apoptotic bodies. Over-expression of the anti-apoptotic Bcl-xL protein had no effect on Dlk/ZIP kinase-induced membrane blebbing, but potently inhibited Dlk/ZIP kinase-induced cytochrome c release and transition of cells to late stage apoptosis. Treatment with caspase inhibitors delayed, but did not prevent entry into late stage apoptosis. These results demonstrate that Dlk/ZIP kinase-triggered apoptosis involves the mitochondrial apoptosis pathway. However, cell death proceeded in the presence of caspase inhibitors, suggesting that Dlk/ZIP kinase is able to activate alternative cell death pathways. Alterations of signal transduction pathways leading to Dlk/ZIP kinase induced apoptosis or loss of expression of upstream activators could play important roles in tumour progression and metastasis of neural tumours. © 2001 Cancer Research Campaign http://www.bjcancer.co
A Framework for Exploring Functional Variability in Olfactory Receptor Genes
BACKGROUND: Olfactory receptors (ORs) are the largest gene family in mammalian genomes. Since nearly all OR genes are orphan receptors, inference of functional similarity or differences between odorant receptors typically relies on sequence comparisons. Based on the alignment of entire coding region sequence, OR genes are classified into families and subfamilies, a classification that is believed to be a proxy for OR gene functional variability. However, the assumption that overall protein sequence diversity is a good proxy for functional properties is untested. METHODOLOGY: Here, we propose an alternative sequence-based approach to infer the similarities and differences in OR binding capacity. Our approach is based on similarities and differences in the predicted binding pockets of OR genes, rather than on the entire OR coding region. CONCLUSIONS: Interestingly, our approach yields markedly different results compared to the analysis based on the entire OR coding-regions. While neither approach can be tested at this time, the discrepancy between the two calls into question the assumption that the current classification reliably reflects OR gene functional variability
Caspase Dependent Programmed Cell Death in Developing Embryos: A Potential Target for Therapeutic Intervention against Pathogenic Nematodes
Pathogenic nematodes currently infect billions of people around the world and pose serious challenges to the economic welfare and public health in most developing countries. At present, limitations of existing therapies warrant identification of new anti-parasitic drugs/drug targets to effectively treat and control neglected tropical diseases [NTD] caused by nematode pathogens. The current gold standard for measuring/screening drug effectiveness against most helminth parasites is in-vitro assessment of motility of parasites/larvae and larval development assays which fails to provide any conclusive idea about the precise mechanism of death of parasitic worms or their larval stages. Given the huge load of parasites or their larval stages in an infected host, a compound which shows promise in in-vitro/motility screening assays but induces necrotic death in parasites/larvae will be of limited use, as it may elicit severe inflammatory response in infected hosts. In this context, the present study, which demonstrates induction of apoptotic death in developing embryos of a pathogenic nematode as a potential drug target for the first time, and provides scope for high throughput screening of pharmacological agents for their apoptogenicity against nematode embryos, is a step forward to develop novel anti-parasitic measures to challenge NTD caused by nematode pathogens
A Simple Genetic Architecture Underlies Morphological Variation in Dogs
The largest genetic study to date of morphology in domestic dogs identifies genes
controlling nearly 100 morphological traits and identifies important trends in
phenotypic variation within this species
Identifying human diamine sensors for death related putrescine and cadaverine molecules
Pungent chemical compounds originating from decaying tissue are strong drivers of animal behavior. Two of the best-characterized death smell components are putrescine (PUT) and cadaverine (CAD), foul-smelling molecules produced by decarboxylation of amino acids during decomposition. These volatile polyamines act as 'necromones', triggering avoidance or attractive responses, which are fundamental for the survival of a wide range of species. The few studies that have attempted to identify the cognate receptors for these molecules have suggested the involvement of the seven-helix trace amine-associated receptors (TAARs), localized in the olfactory epithelium. However, very little is known about the precise chemosensory receptors that sense these compounds in the majority of organisms and the molecular basis of their interactions. In this work, we have used computational strategies to characterize the binding between PUT and CAD with the TAAR6 and TAAR8 human receptors. Sequence analysis, homology modeling, docking and molecular dynamics studies suggest a tandem of negatively charged aspartates in the binding pocket of these receptors which are likely to be involved in the recognition of these small biogenic diamines
Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes
The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system
- …