1,623 research outputs found

    Quantum Metrology in the Kerr Metric

    Full text link
    A surprising feature of the Kerr metric is the anisotropy of the speed of light. The angular momentum of a rotating massive object causes co- and counter-propagating light paths to move at faster and slower velocities, respectively as determined by a far-away clock. Based on this effect we derive ultimate quantum limits for the measurement of the Kerr rotation parameter aa using a interferometric set up. As a possible implementation, we propose a Mach-Zehnder interferometer to measure the "one-way height differential" time effect. We isolate the effect by calibrating to a dark port and rotating the interferometer such that only the direction dependent Kerr-metric induced phase term remains. We transform to the Zero Angular Momentum Observer (ZAMO) flat metric where the observer see c=1c=1. We use this metric and the Lorentz transformations to calculate the same Kerr phase shift. We then consider non-stationary observers moving with the planet's rotation, and find a method for cancelling the additional phase from the classical relative motion, thus leaving only the curvature induced phase.Comment: 9 pages, 7 figures, closest to published versio

    Estimating space-time parameters with a quantum probe in a lossy environment

    Full text link
    We study the problem of estimating the Schwarzschild radius of a massive body using Gaussian quantum probe states. Previous calculations assumed that the probe state remained pure after propagating a large distance. In a realistic scenario, there would be inevitable losses. Here we introduce a practical approach to calculate the Quantum Fisher Informations (QFIs) for a quantum probe that has passed through a lossy channel. Whilst for many situations loss means coherent states are optimal, we identify certain situations for which squeezed states have an advantage. We also study the effect of the frequency profile of the wavepacket propagating from Alice to Bob. There exists an optimal operating point for a chosen mode profile. In particular, employing a smooth rectangular frequency profile significantly improves the error bound on the Schwarzschild radius compared to a Gaussian frequency profile.Comment: 14 pages, 18 figure

    Computation using Noise-based Logic: Efficient String Verification over a Slow Communication Channel

    Full text link
    Utilizing the hyperspace of noise-based logic, we show two string verification methods with low communication complexity. One of them is based on continuum noise-based logic. The other one utilizes noise-based logic with random telegraph signals where a mathematical analysis of the error probability is also given. The last operation can also be interpreted as computing universal hash functions with noise-based logic and using them for string comparison. To find out with 10^-25 error probability that two strings with arbitrary length are different (this value is similar to the error probability of an idealistic gate in today's computer) Alice and Bob need to compare only 83 bits of the noise-based hyperspace.Comment: Accepted for publication in European Journal of Physics B (November 10, 2010

    Fluctuation-enhanced sensing

    Full text link
    We present a short survey on fluctuation-enhanced gas sensing. We compare some of its main characteristics with those of classical sensing. We address the problem of linear response, information channel capacity, missed alarms and false alarms.Comment: Keynote Talk at SPIE's 4th international symposium on Fluctuations and Noise, Conference Noise and Fluctuations in Circuits, Devices and Materials, Florence, Italy, May 20-24, 200
    • …
    corecore