527 research outputs found

    Superconducting properties of RuSr2GdCu2O8 studied by SQUID magnetometry

    Full text link
    For polycrystalline RuSr2GdCu2O8 (Ru-1212), distinct peaks have been reported in d.c. magnetization in the superconducting state of the sample. Sr2GdRuO6 (Sr-2116), the precursor for the preparation of Ru-1212, shows similar peaks in the same temperature regime. Based on measurements performed on both bulk and powdered samples of Ru-1212 and Sr-2116, we exclude the possibility, that the observed behavior of the magnetization of Ru-1212 is due to Sr-2116 impurities. The effect is related to the superconductivity of Ru-1212, but it is not an intrinsic property of this compound. We provide evidence that the observation of magnetization peaks in the superconducting state of Ru-1212 is due to flux motion generated by the movement of the sample in an inhomogeneous field, during the measurement in the SQUID magnetometer. We propose several tests, that help to decide, whether the features observed in a SQUID magnetization measurement of Ru-1212 represent a property of the compound or not.Comment: 22 pages, 9 figure

    Sparsity driven ultrasound imaging

    Get PDF
    An image formation framework for ultrasound imaging from synthetic transducer arrays based on sparsity-driven regularization functionals using single-frequency Fourier domain data is proposed. The framework involves the use of a physics-based forward model of the ultrasound observation process, the formulation of image formation as the solution of an associated optimization problem, and the solution of that problem through efficient numerical algorithms. The sparsity-driven, model-based approach estimates a complex-valued reflectivity field and preserves physical features in the scene while suppressing spurious artifacts. It also provides robust reconstructions in the case of sparse and reduced observation apertures. The effectiveness of the proposed imaging strategy is demonstrated using experimental data

    Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide

    Get PDF
    We sampled interstitial air from the perennial snowpack (firn) at a site near the West Antarctic Ice Sheet Divide (WAIS-D) and analyzed the air samples for a wide variety of gas species and their isotopes. We find limited convective influence (1.4–5.2 m, depending on detection method) in the shallow firn, gravitational enrichment of heavy species throughout the diffusive column in general agreement with theoretical expectations, a ~10 m thick lock-in zone beginning at ~67 m, and a total firn thickness consistent with predictions of Kaspers et al. (2004). Our modeling work shows that the air has an age spread (spectral width) of 4.8 yr for CO<sub>2</sub> at the firn-ice transition. We also find that advection of firn air due to the 22 cm yr<sup>−1</sup> ice-equivalent accumulation rate has a minor impact on firn air composition, causing changes that are comparable to other modeling uncertainties and intrinsic sample variability. Furthermore, estimates of Δage (the gas age/ice age difference) at WAIS-D appear to be largely unaffected by bubble closure above the lock-in zone. Within the lock-in zone, small gas species and their isotopes show evidence of size-dependent fractionation due to permeation through the ice lattice with a size threshold of 0.36 nm, as at other sites. We also see an unequivocal and unprecedented signal of oxygen isotope fractionation within the lock-in zone, which we interpret as the mass-dependent expression of a size-dependent fractionation process

    A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Get PDF
    We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol-1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol-1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ˜ 30 nmol mol-1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe

    Orbital Structure and Magnetic Ordering in Layered Manganites: Universal Correlation and Its Mechanism

    Full text link
    Correlation between orbital structure and magnetic ordering in bilayered manganites is examined. A level separation between the 3d3z2r23d_{3z^2-r^2} and 3dx2y23d_{x^2-y^2} orbitals in a Mn ion is calculated in the ionic model for a large number of the compounds. It is found that the relative stability of the orbitals dominates the magnetic transition temperatures as well as the magnetic structures. A mechanism of the correlation between orbital and magnetism is investigated based on the theoretical model with the two ege_g orbitals under strong electron correlation.Comment: 4 pages, 4 figure

    Atmospheric O2/N2 changes, 1993-2002: Implications for the partitioning of fossil fuel CO2 sequestration

    Get PDF
    Improvements made to an established mass spectrometric method for measuring changes in atmospheric O2/N2 are described. With the improvements in sample handling and analysis, sample throughput and analytical precision have both increased. Aliquots from duplicate flasks are repeatedly measured over a period of 2 weeks, with an overall standard error in each flask of 3-4 per meg, corresponding to 0.6-0.8 ppm O2 in air. Records of changes in O2/N2 from six global sampling stations (Barrow, American Samoa, Cape Grim, Amsterdam Island, Macquarie Island, and Syowa Station) are presented. Combined with measurements Of CO2 from the same sample flasks, land and ocean carbon uptake were calculated from the three sampling stations with the longest records (Barrow, Samoa, and Cape Grim). From 1994-2002, We find the average CO2 uptake by the ocean and the land biosphere was 1.7 ± 0.5 and 1.0 ± 0.6 GtC yr -1 respectively; these numbers include a correction of 0.3 Gt C yr-l due to secular outgassing of ocean O2. Interannual variability calculated from these data shows a strong land carbon source associated with the 1997-1998 El Niño event, supporting many previous studies indicating that high atmospheric growth rates observed during most El Niño events reflect diminished land uptake. Calculations of interannual variability in land and ocean uptake are probably confounded by non-zero annual air sea fluxes of O2. The origin of these fluxes is not yet understood. Copyright 2005 by the American Geophysical Union

    CMB polarimetry with BICEP: instrument characterization, calibration, and performance

    Get PDF
    BICEP is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature on the polarization of the cosmic microwave background (CMB) at degree angular scales. Currently in its third year of operation at the South Pole, BICEP is measuring the CMB polarization with unprecedented sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the first two years of the experiment is reviewed.Comment: 12 pages, 15 figures, updated version of a paper accepted for Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, Proceedings of SPIE, 7020, 200

    Magnetism, Charge Order and Giant Magnetoresistance in SrFeO3δ_{3-\delta} Single Crystals

    Full text link
    The electronic and magnetic properties of SrFeO3δ_{3-\delta} single crystals with controlled oxygen content (0δ0.190 \leq \delta \leq 0.19) have been studied systematically by susceptibility, transport and spectroscopic techniques. An intimate correlation between the spin-charge ordering and the electronic transport behavior is found. Giant negative as well as positive magnetoresistance are observed.Comment: published versio

    The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter

    Get PDF
    The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37 arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275, 200

    The Grizzly, November 21, 1980

    Get PDF
    Dean of Students\u27 Office Releases Vandalism Figures • Maintenance Working To Conserve Energy • Weight Room Relocated In Helfferich • College Union Attempts World\u27s Largest Molecule • Ursinus News In Brief: Espadas to speak today in Illinois; Maintenance planting new trees; Placement interviews coming soon • Rassias Method Explored for Languages • Journalism To Be Added To Curriculum • Medical Ethics Course Offered • Phil. & Rel. Dept. Lecture On Judaism • College To Host 43rd Messiah Performance • Foghat and Outlaws Perform for \u27Serious Rockers\u27 • Forum On Radiation Draws Mixed Views • Art Exhibit On Display In Wismer • Open House Planned By Astronomy Club • A Look At This Year\u27s Basketball Season • Cross Country To Compete In Nationals This Weekend • Gridders Lose Early Lead to Tie Gettysburghttps://digitalcommons.ursinus.edu/grizzlynews/1048/thumbnail.jp
    corecore