28,904 research outputs found
Vacuum-UV negative photoion spectroscopy of gas-phase polyatomic molecules
This Review describes recent experiments to detect anions following vacuum-UV photoexcitation of gas-phase polyatomic molecules. Using synchrotron radiation in the range 10-35 eV at a resolution down to 0.02 eV, negative ions formed are detected by mass spectrometry. The molecules studied in detail include CF, SF and CH; the CFX series where X = Cl,Br,I; the CHY series where Y = F,Cl,Br; and SFZ where Z = CF,Cl. Spectra and raw data only are reported for other members of the CHF, CHCl including CCl, and CFCl series where (+) = 4; and saturated and unsaturated members of the CH and CF series up to m = 3. Anions detected range from atomic species such as H-, F- and Cl- through to heavier polyatomics such as SF, CF and CHCl. The majority of anions display a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation, generically written as ABC + h D + E + neutral(s). In a few cases, the anion signal increases much more rapidly than a linear dependence with pressure, suggesting that anions now form via a multi-step process such as dissociative electron attachment. Cross sections for ion-pair formation can be put on to an absolute scale by calibrating the signal strength with those of F from SF and CF, although there are difficulties associated with the determination of H cross sections from hydrogen-containing molecules unless this anion is dominant. Following normalisation to total vacuum-UV absorption cross sections (where data are available), quantum yields for anion production are obtained. Cross sections in the range ca. 10 to 10 cm , and quantum yields in the range ca. 10 to 10 are reported. The Review describes the two ion-pair mechanisms of indirect and direct formation and their differing characteristics, and the properties needed for anion formation by dissociative electron attachment. From this huge quantity of data, attempts are made to rationalise the circumstances needed for favourable formation of anions, and which anions have the largest cross section for their formation. Since most anions form indirectly via predissociation of an initially-excited Rydberg state of the parent molecule by an ion-pair continuum, it appears that the dynamics of this curve crossing is the dominant process which determines which anions are formed preferentially. The thermochemistry of the different exit channels and the microscopic properties of the anion formed do not appear to be especially significant. Finally, for the reaction ABC + h A + BC , the appearance energy of A can be used to determine an upper limit to the bond dissociation energy of AB (to A + BC), or an upper limit to that of ABC (to A + BC). Where known, the data are in excellent agreement with literature values
Vacuum-Ultraviolet negative photoion spectroscopy of SF5Cl
Using vacuum-UV radiation from a synchrotron, gas-phase negative ions are detected by mass spectrometry following photoexcitation of SFCl. F, Cl and SFare observed, and their ion yields recorded in the range 8-30 eV. F and Cl show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation, generically written AB + h C + D (+ neutral(s)). F is the strongest signal, and absolute cross sections are determined by calibrating the signal intensity with that of F from SF and CF. Resonances are observed, and assigned to transitions to Rydberg states of SFCl. The Cl signal is much weaker, despite the S-Cl bond being significantly weaker than the S-F bond. Appearance energies for F and Cl of 12.7 ± 0.2 and 10.6 ± 0.2 eV are determined. The spectra suggest that these ions form indirectly by crossing of Rydberg states of SFCl onto an ion-pair continuum
Determination of the Telluric Water Vapor Absorption Correction for Astronomical Data Obtained from the Kuiper Airborne Observatory
The amount of telluric water vapor along the line of sight of the Kuiper Airborne Observatory telescope as obtained concommitantly on 23 flights is compared with the NASA-Ames Michelson interferometer and with the NOAA-Boulder radiometer. A strong correlation between the two determinations exists, and a method for computing the atmospheric transmission for a given radiometer reading is established
Near-infrared and X-ray obscuration to the nucleus of the Seyfert 2 galaxy NGC 3281
We present the results of a near-infrared and X-ray study of the Seyfert 2
galaxy NGC 3281. Emission from the Seyfert nucleus is detected in both regions
of the electromagnetic spectrum, allowing us to infer both the equivalent line
of sight hydrogen column density, N_H = 71.0(+11.3,-12.3)e26/m^2 and the
extinction due to dust, A_V = 22+/-11 magnitudes (90% confidence intervals). We
infer a ratio of N_H/A_V which is an order of magnitude larger than that
determined along lines of sight in the Milky Way and discuss possible
interpretations. We consider the most plausible explanation to be a dense cloud
in the foreground of both the X-ray and infrared emitting regions which
obscures the entire X-ray source but only a fraction of the much larger
infrared source.Comment: 23 pages including 9 figure
Overview of the Main Propulsion System for a Nuclear Thermal Propulsion Flight Demonstrator
A demonstration of a Nuclear Thermal Propulsion (NTP) engine has not been conducted in over 50 years. Several tests were conducted during the NERVA program but no NTP engine was ever flown in space. In the last several years there has been a considerable amount of conceptual design work on NTP engines conducted. With the prospect of human Mars missions in the 2030s there has been a renewed interest in NTP engines. A concept design study was conducted with the intent to design 2 flight demonstrator vehicles that would buy down programmatic and technical risks associated with launching and operating nuclear reactors in space. The intent of the first demonstrator mission would be to employ a simplified NTP engine and buy down programmatic risks whereas the second demonstrator would buy down technical risks with a NTP engine designed to be similar to an operational NTP model. The results of the study showed that a simplified NTP engine demonstrator could be feasibly built and flown in the near term with mostly high TRL, commercial off-the-shelf components
Cryogenic propellant venting under low pressure conditions Final report
Wall temperatures and heat transfer coefficients for solid-vapor mixtures of para hydrogen and nitrogen venting under low pressur
Scalable iterative methods for sampling from massive Gaussian random vectors
Sampling from Gaussian Markov random fields (GMRFs), that is multivariate
Gaussian ran- dom vectors that are parameterised by the inverse of their
covariance matrix, is a fundamental problem in computational statistics. In
this paper, we show how we can exploit arbitrarily accu- rate approximations to
a GMRF to speed up Krylov subspace sampling methods. We also show that these
methods can be used when computing the normalising constant of a large
multivariate Gaussian distribution, which is needed for both any
likelihood-based inference method. The method we derive is also applicable to
other structured Gaussian random vectors and, in particu- lar, we show that
when the precision matrix is a perturbation of a (block) circulant matrix, it
is still possible to derive O(n log n) sampling schemes.Comment: 17 Pages, 4 Figure
Fuselage shell and cavity response measurements on a DC-9 test section
A series of fuselage shell and cavity response measurements conducted on a DC-9 aircraft test section are described. The objectives of these measurements were to define the shell and cavity model characteristics of the fuselage, understand the structural-acoustic coupling characteristics of the fuselage, and measure the response of the fuselage to different types of acoustic and vibration excitation. The fuselage was excited with several combinations of acoustic and mechanical sources using interior and exterior loudspeakers and shakers, and the response to these inputs was measured with arrays of microphones and accelerometers. The data were analyzed to generate spatial plots of the shell acceleration and cabin acoustic pressure field, and corresponding acceleration and pressure wavenumber maps. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, structural-acoustic coupling, and fuselage response
- …