1,604 research outputs found
Quantifying long-range correlations in complex networks beyond nearest neighbors
We propose a fluctuation analysis to quantify spatial correlations in complex
networks. The approach considers the sequences of degrees along shortest paths
in the networks and quantifies the fluctuations in analogy to time series. In
this work, the Barabasi-Albert (BA) model, the Cayley tree at the percolation
transition, a fractal network model, and examples of real-world networks are
studied. While the fluctuation functions for the BA model show exponential
decay, in the case of the Cayley tree and the fractal network model the
fluctuation functions display a power-law behavior. The fractal network model
comprises long-range anti-correlations. The results suggest that the
fluctuation exponent provides complementary information to the fractal
dimension
APMEC: An Automated Provisioning Framework for Multi-access Edge Computing
Novel use cases and verticals such as connected cars and human-robot
cooperation in the areas of 5G and Tactile Internet can significantly benefit
from the flexibility and reduced latency provided by Network Function
Virtualization (NFV) and Multi-Access Edge Computing (MEC). Existing frameworks
managing and orchestrating MEC and NFV are either tightly coupled or completely
separated. The former design is inflexible and increases the complexity of one
framework. Whereas, the latter leads to inefficient use of computation
resources because information are not shared. We introduce APMEC, a dedicated
framework for MEC while enabling the collaboration with the management and
orchestration (MANO) frameworks for NFV. The new design allows to reuse
allocated network services, thus maximizing resource utilization. Measurement
results have shown that APMEC can allocate up to 60% more number of network
services. Being developed on top of OpenStack, APMEC is an open source project,
available for collaboration and facilitating further research activities
Recommended from our members
Interplay between Diets, Health, and Climate Change
The world is facing a triple burden of undernourishment, obesity, and environmental impacts from agriculture while nourishing its population. This burden makes sustainable nourishment of the growing population a global challenge. Addressing this challenge requires an understanding of the interplay between diets, health, and associated environmental impacts (e.g., climate change). For this, we identify 11 typical diets that represent dietary habits worldwide for the last five decades. Plant-source foods provide most of all three macronutrients (carbohydrates, protein, and fat) in developing countries. In contrast, animal-source foods provide a majority of protein and fat in developed ones. The identified diets deviate from the recommended healthy diet with either too much (e.g., red meat) or too little (e.g., fruits and vegetables) food and nutrition supply. The total calorie supplies are lower than required for two diets. Sugar consumption is higher than recommended for five diets. Three and five diets consist of larger-than-recommended carbohydrate and fat shares, respectively. Four diets with a large share of animal-source foods exceed the recommended value of red meat. Only two diets consist of at least 400 gm/cap/day of fruits and vegetables while accounting for food waste. Prevalence of undernourishment and underweight dominates in the diets with lower calories. In comparison, a higher prevalence of obesity is observed for diets with higher calories with high shares of sugar, fat, and animal-source foods. However, embodied emissions in the diets do not show a clear relation with calorie supplies and compositions. Two high-calorie diets embody more than 1.5 t CO 2 eq/cap/yr, and two low-calorie diets embody around 1 t CO 2 eq/cap/yr. Our analysis highlights that sustainable and healthy diets can serve the purposes of both nourishing the population and, at the same time, reducing the environmental impacts of agriculture
Embodied Greenhouse Gas Emissions in Diets
Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to <3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO2eq./yr by 2050
- …