1,604 research outputs found

    Quantifying long-range correlations in complex networks beyond nearest neighbors

    Full text link
    We propose a fluctuation analysis to quantify spatial correlations in complex networks. The approach considers the sequences of degrees along shortest paths in the networks and quantifies the fluctuations in analogy to time series. In this work, the Barabasi-Albert (BA) model, the Cayley tree at the percolation transition, a fractal network model, and examples of real-world networks are studied. While the fluctuation functions for the BA model show exponential decay, in the case of the Cayley tree and the fractal network model the fluctuation functions display a power-law behavior. The fractal network model comprises long-range anti-correlations. The results suggest that the fluctuation exponent provides complementary information to the fractal dimension

    APMEC: An Automated Provisioning Framework for Multi-access Edge Computing

    Full text link
    Novel use cases and verticals such as connected cars and human-robot cooperation in the areas of 5G and Tactile Internet can significantly benefit from the flexibility and reduced latency provided by Network Function Virtualization (NFV) and Multi-Access Edge Computing (MEC). Existing frameworks managing and orchestrating MEC and NFV are either tightly coupled or completely separated. The former design is inflexible and increases the complexity of one framework. Whereas, the latter leads to inefficient use of computation resources because information are not shared. We introduce APMEC, a dedicated framework for MEC while enabling the collaboration with the management and orchestration (MANO) frameworks for NFV. The new design allows to reuse allocated network services, thus maximizing resource utilization. Measurement results have shown that APMEC can allocate up to 60% more number of network services. Being developed on top of OpenStack, APMEC is an open source project, available for collaboration and facilitating further research activities

    Embodied Greenhouse Gas Emissions in Diets

    Get PDF
    Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to <3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO2eq./yr by 2050
    corecore