8 research outputs found

    Bubble Growth in Superfluid 3-He: The Dynamics of the Curved A-B Interface

    Full text link
    We study the hydrodynamics of the A-B interface with finite curvature. The interface tension is shown to enhance both the transition velocity and the amplitudes of second sound. In addition, the magnetic signals emitted by the growing bubble are calculated, and the interaction between many growing bubbles is considered.Comment: 20 pages, 3 figures, LaTeX, ITP-UH 11/9

    Dissipation of the 3^He A-B Transition

    Full text link
    A rigorous hydrodynamic theory of the A-B transition is presented. All dissipative processes are considered. At low interface velocities, those occurring on hydrodynamic length scales, not considered hitherto, are most probably the dominant ones.Comment: 13 pages, REVTeX, 2 figures, ITP-UH 13/9

    Why hyperbolic theories of dissipation cannot be ignored: Comments on a paper by Kostadt and Liu

    Get PDF
    Contrary to what is asserted in a recent paper by Kostadt and Liu ("Causality and stability of the relativistic diffusion equation"), experiments can tell apart (and in fact do) hyperbolic theories from parabolic theories of dissipation. It is stressed that the existence of a non--negligible relaxation time does not imply for the system to be out of the hydrodynamic regime.Comment: 8 pages Latex, to appear in Phys.Rev.

    Granular Solid Hydrodynamics

    Get PDF
    Granular elasticity, an elasticity theory useful for calculating static stress distribution in granular media, is generalized to the dynamic case by including the plastic contribution of the strain. A complete hydrodynamic theory is derived based on the hypothesis that granular medium turns transiently elastic when deformed. This theory includes both the true and the granular temperatures, and employs a free energy expression that encapsulates a full jamming phase diagram, in the space spanned by pressure, shear stress, density and granular temperature. For the special case of stationary granular temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity}, a state-of-the-art engineering model.Comment: 42 pages 3 fi
    corecore