760 research outputs found

    Statistical Uncertainty in Quantitative Neutron Radiography

    Full text link
    We demonstrate a novel procedure to calibrate neutron detection systems commonly used in standard neutron radiography. This calibration allows determining the uncertainties due to Poisson-like neutron counting statistics for each individual pixel of a radiographic image. The obtained statistical errors are necessary in order to perform a correct quantitative analysis. This fast and convenient method is applied to data measured at the cold neutron radiography facility ICON at the Paul Scherrer Institute. Moreover, from the results the effective neutron flux at the beam line is determined

    Synchronized single electron emission from dynamical quantum dots

    Full text link
    We study synchronized quantized charge pumping through several dynamical quantum dots (QDs) driven by a single time modulated gate signal. We show that the main obstacle for synchronization being the lack of uniformity can be overcome by operating the QDs in the decay cascade regime. We discuss the mechanism responsible for lifting the stringent uniformity requirements. This enhanced functionality of dynamical QDs might find applications in nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP

    Constructive role of non-adiabaticity for quantized charge pumping

    Full text link
    We investigate a recently developed scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAl-GaAs gated nanowire. It has been shown theoretically that non-adiabaticity is fundamentally required to realize single-parameter pumping, while in previous multi-parameter pumping schemes it caused unwanted and less controllable currents. In this paper we demonstrate experimentally the constructive and destructive role of non-adiabaticity by analysing the pumping current over a broad frequency range.Comment: Presented at ICPS 2010, July 25 - 30, Seoul, Kore

    Artificial neural networks for 3D cell shape recognition from confocal images

    Full text link
    We present a dual-stage neural network architecture for analyzing fine shape details from microscopy recordings in 3D. The system, tested on red blood cells, uses training data from both healthy donors and patients with a congenital blood disease. Characteristic shape features are revealed from the spherical harmonics spectrum of each cell and are automatically processed to create a reproducible and unbiased shape recognition and classification for diagnostic and theragnostic use.Comment: 17 pages, 8 figure

    Variations in pore size and contact angle distributions control rhizosphere rewetting

    Get PDF
    Rhizosphere wettability decreases upon severe drying leading to periods of prolonged low water content around roots after precipitation or irrigation. These observations were explained by the temporal hydrophobic character of mucilage, while structural alterations of the pore space caused by mucilage, such as pore clogging, remained mostly unexplored. In this study, time-series neutron radiography and a pore network model were used to assess the impact of pore geometry and wettability on water flow following the addition of mucilage in a sand substrate. To do so, we monitored the capillary rise of ethanol and water separately for mucilage contents, ranging from 0.0 to 2.0 mg g−1. A pore network model was developed to analyze the impact of alterations in pore geometry and wettability. Results are compared with analytical solutions of the Lucas-Washburn equation. Rewetting dynamics were explained by a combination of a decrease in effective pore throat size and a global decrease in wettability. The local distribution of wettability, however, appeared of minor importance as dynamics of water imbibition could be matched by a uniform effective contact angle. For 0.1 mg g−1 mucilage content increased wettability was predicted for both approaches: the analytical solution and the pore network model fit. At larger contents, a decrease in wettability occurred which was accompanied by a decrease in derived effective pore and pore throat size. On a minute scale, rewetting appeared to steadily progress at all mucilage contents with accelerated rewetting observed at 0.6 mg g−1 likely related to an increased wetting front length. This study highlights the importance of mucilage on pore geometry in combination with wettability modifications in the rhizosphere. Aside from rhizosphere rewetting, the presented approach provides an opportunity to investigate further wettability-related processes in other soil environments on various spatial scales

    Quantum capacitance: a microscopic derivation

    Full text link
    We start from microscopic approach to many body physics and show the analytical steps and approximations required to arrive at the concept of quantum capacitance. These approximations are valid only in the semi-classical limit and the quantum capacitance in that case is determined by Lindhard function. The effective capacitance is the geometrical capacitance and the quantum capacitance in series, and this too is established starting from a microscopic theory.Comment: 7 fig

    The spirit of sport: the case for criminalisation of doping in the UK

    Get PDF
    This article examines public perceptions of doping in sport, critically evaluates the effectiveness of current anti-doping sanctions and proposes the criminalisation of doping in sport in the UK as part of a growing global movement towards such criminalisation at national level. Criminalising doping is advanced on two main grounds: as a stigmatic deterrent and as a form of retributive punishment enforced through the criminal justice system. The ‘spirit of sport’ defined by the World Anti-Doping Agency (WADA) as being based on the values of ethics, health and fair-play is identified as being undermined by the ineffectiveness of existing anti-doping policy in the current climate of doping revelations, and is assessed as relevant to public perceptions and the future of sport as a whole. The harm-reductionist approach permitting the use of certain performance enhancing drugs (PEDs) is considered as an alternative to anti-doping, taking into account athlete psychology, the problems encountered in containing doping in sport through anti-doping measures and the effect of these difficulties on the ‘spirit of sport’. This approach is dismissed in favour of criminalising doping in sport based on the offence of fraud. It will be argued that the criminalisation of doping could act as a greater deterrent than existing sanctions imposed by International Federations, and, when used in conjunction with those sanctions, will raise the overall ‘price’ of doping. The revelations of corruption within the existing system of self-governance within sport have contributed to a disbelieving public and it will be argued that the criminalisation of doping in sport could assist in satisfying the public that justice is being done and in turn achieve greater belief in the truth of athletic performances
    corecore