41 research outputs found
Three-slit experiments and quantum nonlocality
An interesting link between two very different physical aspects of quantum
mechanics is revealed; these are the absence of third-order interference and
Tsirelson's bound for the nonlocal correlations. Considering multiple-slit
experiments - not only the traditional configuration with two slits, but also
configurations with three and more slits - Sorkin detected that third-order
(and higher-order) interference is not possible in quantum mechanics. The EPR
experiments show that quantum mechanics involves nonlocal correlations which
are demonstrated in a violation of the Bell or CHSH inequality, but are still
limited by a bound discovered by Tsirelson. It now turns out that Tsirelson's
bound holds in a broad class of probabilistic theories provided that they rule
out third-order interference. A major characteristic of this class is the
existence of a reasonable calculus of conditional probability or, phrased more
physically, of a reasonable model for the quantum measurement process.Comment: 9 pages, no figur
On defining the Hamiltonian beyond quantum theory
Energy is a crucial concept within classical and quantum physics. An
essential tool to quantify energy is the Hamiltonian. Here, we consider how to
define a Hamiltonian in general probabilistic theories, a framework in which
quantum theory is a special case. We list desiderata which the definition
should meet. For 3-dimensional systems, we provide a fully-defined recipe which
satisfies these desiderata. We discuss the higher dimensional case where some
freedom of choice is left remaining. We apply the definition to example toy
theories, and discuss how the quantum notion of time evolution as a phase
between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of
Physics topical collection on Foundational Aspects of Quantum Informatio
Three-dimensionality of space and the quantum bit: an information-theoretic approach
It is sometimes pointed out as a curiosity that the state space of quantum
two-level systems, i.e. the qubit, and actual physical space are both
three-dimensional and Euclidean. In this paper, we suggest an
information-theoretic analysis of this relationship, by proving a particular
mathematical result: suppose that physics takes place in d spatial dimensions,
and that some events happen probabilistically (not assuming quantum theory in
any way). Furthermore, suppose there are systems that carry "minimal amounts of
direction information", interacting via some continuous reversible time
evolution. We prove that this uniquely determines spatial dimension d=3 and
quantum theory on two qubits (including entanglement and unitary time
evolution), and that it allows observers to infer local spatial geometry from
probability measurements.Comment: 13 + 22 pages, 9 figures. v4: some clarifications, in particular in
Section V / Appendix C (added Example 39
On the notion of composite system
The notion of composite system made up of distinguishable parties is
investigated in the context of arbitrary convex spaces.Comment: 9 pages. Comments are welcom
IMPROVING GOOGLE'S CARTOGRAPHER 3D MAPPING BY CONTINUOUS-TIME SLAM
This paper shows how to use the result of Google's SLAM solution, called Cartographer, to bootstrap our continuous-time SLAM
algorithm. The presented approach optimizes the consistency of the global point cloud, and thus improves on Google’s results. We use
the algorithms and data from Google as input for our continuous-time SLAM software. We also successfully applied our software to a
similar backpack system which delivers consistent 3D point clouds even in absence of an IMU