47 research outputs found

    Energy Release During Slow Long Duration Flares Observed by RHESSI

    Get PDF
    Slow Long Duration Events (SLDEs) are flares characterized by long duration of rising phase. In many such cases impulsive phase is weak with lack of typical short-lasting pulses. Instead of that smooth, long-lasting Hard X-ray (HXR) emission is observed. We analysed hard X-ray emission and morphology of six selected SLDEs. In our analysis we utilized data from RHESSI and GOES satellites. Physical parameters of HXR sources were obtained from imaging spectroscopy and were used for the energy balance analysis. Characteristic time of heating rate decrease, after reaching its maximum value, is very long, which explains long rising phase of these flares.Comment: Accepted for publication in Solar Physic

    A phosphatase cascade by which rewarding stimuli control nucleosomal response

    Get PDF
    ArticleInternational audienceDopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascad

    A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC

    Get PDF

    Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of Aurora-A and mutant Ras (Ras<sup>V12</sup>) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear.</p> <p>Methods</p> <p>Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-<it>ras </it>mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either Ras<sup>V12</sup>and wild-type Aurora-A (designated WT) or Ras<sup>V12 </sup>and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved.</p> <p>Results</p> <p>Overexpression of wild-type Aurora-A and mutation of Ras<sup>V12 </sup>were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the Ras<sup>V12 </sup>transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the Ras<sup>V12 </sup>transformants.</p> <p>Conclusion</p> <p>Wild-type-Aurora-A enhances focus formation and aggregation of the Ras<sup>V12 </sup>transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway.</p

    The cellular geography of Aurora kinases

    Get PDF
    Aurora is the name given to a family of highly conserved protein kinases with essential roles in many aspects of cell division. Yeasts have a single Aurora kinase, whereas mammals have three: Aurora A, B and C. During mitosis, Aurora kinases regulate the structure and function of the cytoskeleton and chromosomes and the interactions between these two at the kinetochore. They also regulate signalling by the spindle-assembly checkpoint pathway and cytokinesis. Perturbation of Aurora kinase expression or function might lead to cancer
    corecore