1,177 research outputs found
StpA protein from Escherichia coli condenses supercoiled DNA in preference to linear DNA and protects it from digestion by DNase I and EcoKI
The nucleoid-associated protein, StpA, of Escherichia coli binds non-specifically to double-stranded DNA (dsDNA) and apparently forms bridges between adjacent segments of the DNA. Such a coating of protein on the DNA would be expected to hinder the action of nucleases. We demonstrate that StpA binding hinders dsDNA cleavage by both the non-specific endonuclease, DNase I, and by the site-specific type I restriction endonuclease, EcoKI. It requires approximately one StpA molecule per 250–300 bp of supercoiled DNA and approximately one StpA molecule per 60–100 bp on linear DNA for strong inhibition of the nucleases. These results support the role of StpA as a nucleoid-structuring protein which binds DNA segments together. The inhibition of EcoKI, which cleaves DNA at a site remote from its initial target sequence after extensive DNA translocation driven by ATP hydrolysis, suggests that these enzymes would be unable to function on chromosomal DNA even during times of DNA damage when potentially lethal, unmodified target sites occur on the chromosome. This supports a role for nucleoid-associated proteins in restriction alleviation during times of cell stress
Second-order Democratic Aggregation
Aggregated second-order features extracted from deep convolutional networks
have been shown to be effective for texture generation, fine-grained
recognition, material classification, and scene understanding. In this paper,
we study a class of orderless aggregation functions designed to minimize
interference or equalize contributions in the context of second-order features
and we show that they can be computed just as efficiently as their first-order
counterparts and they have favorable properties over aggregation by summation.
Another line of work has shown that matrix power normalization after
aggregation can significantly improve the generalization of second-order
representations. We show that matrix power normalization implicitly equalizes
contributions during aggregation thus establishing a connection between matrix
normalization techniques and prior work on minimizing interference. Based on
the analysis we present {\gamma}-democratic aggregators that interpolate
between sum ({\gamma}=1) and democratic pooling ({\gamma}=0) outperforming both
on several classification tasks. Moreover, unlike power normalization, the
{\gamma}-democratic aggregations can be computed in a low dimensional space by
sketching that allows the use of very high-dimensional second-order features.
This results in a state-of-the-art performance on several datasets
Urban mapping in Dar es Salaam using AJIVE
Mapping deprivation in urban areas is important, for example for identifying
areas of greatest need and planning interventions. Traditional ways of
obtaining deprivation estimates are based on either census or household survey
data, which in many areas is unavailable or difficult to collect. However,
there has been a huge rise in the amount of new, non-traditional forms of data,
such as satellite imagery and cell-phone call-record data, which may contain
information useful for identifying deprivation. We use Angle-Based Joint and
Individual Variation Explained (AJIVE) to jointly model satellite imagery data,
cell-phone data, and survey data for the city of Dar es Salaam, Tanzania. We
first identify interpretable low-dimensional structure from the imagery and
cell-phone data, and find that we can use these to identify deprivation. We
then consider what is gained from further incorporating the more traditional
and costly survey data. We also introduce a scalar measure of deprivation as a
response variable to be predicted, and consider various approaches to multiview
regression, including using AJIVE scores as predictors.Comment: 34 pages, 25 figure
Atomic force microscopy of the EcoKI Type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping
Atomic force microscopy (AFM) allows the study of single protein–DNA interactions such as those observed with the Type I Restriction–Modification systems. The mechanisms employed by these systems are complicated and understanding them has proved problematic. It has been known for years that these enzymes translocate DNA during the restriction reaction, but more recent AFM work suggested that the archetypal EcoKI protein went through an additional dimerization stage before the onset of translocation. The results presented here extend earlier findings confirming the dimerization. Dimerization is particularly common if the DNA molecule contains two EcoKI recognition sites. DNA loops with dimers at their apex form if the DNA is sufficiently long, and also form in the presence of ATPγS, a non-hydrolysable analogue of the ATP required for translocation, indicating that the looping is on the reaction pathway of the enzyme. Visualization of specific DNA loops in the protein–DNA constructs was achieved by improved sample preparation and analysis techniques. The reported dimerization and looping mechanism is unlikely to be exclusive to EcoKI, and offers greater insight into the detailed functioning of this and other higher order assemblies of proteins operating by bringing distant sites on DNA into close proximity via DNA looping
Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations.
A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA
Three-dimensional analysis of sexual dimorphism in ribcage kinematics of modern humans
Objectives: Sexual dimorphism is an important biological factor underlying morphological variation in the human skeleton. Previous research found sex-related differences in the static ribcage, with males having more horizontally oriented ribs and a wider lower ribcage than females. Furthermore, a recent study found sex-related differences in the kinematics of the human lungs, with cranio-caudal movements of the caudal part of the lungs accounting for most of the differences between sexes. However, these movements cannot be quantified in the skeletal ribcage, so we do not know if the differences observed in the lungs are also reflected in sex differences in the motion of the skeletal thorax. Materials and methods: To address this issue, we quantified the morphological variation of 42 contemporary human ribcages (sex-balanced) in both maximal inspiration and expiration using 526 landmarks and semilandmarks. Thoracic centroid size differences between sexes were assessed using a t test, and shape differences were assessed using Procrustes shape coordinates, through mean comparisons and dummy regressions of shape on kinematic status. A principal components analysis was used to explore the full range of morphological variation. Results: Our results show significant size differences between males and females both in inspiration and expiration (p <.01) as well as significant shape differences, with males deforming more than females during inspiration, especially in the mediolateral dimension of the lower ribcage. Finally, dummy regressions of shape on kinematic status showed a small but statistically significant difference in vectors of breathing kinematics between males and females (14.78°; p <.01). Discussion: We support that sex-related differences in skeletal ribcage kinematics are discernible, even when soft tissues are not analyzed. We hypothesize that this differential breathing pattern is primarily a result of more pronounced diaphragmatic breathing in males, which might relate to differences in body composition, metabolism, and ultimately greater oxygen demand in males compared to females. Future research should further explore the links between ribcage morphological variation and basal metabolic rate
Restriction endonuclease TseI cleaves A:A and T:T mismatches in CAG and CTG repeats.
The type II restriction endonuclease TseI recognizes the DNA target sequence 5'-G^CWGC-3' (where W = A or T) and cleaves after the first G to produce fragments with three-base 5'-overhangs. We have determined that it is a dimeric protein capable of cleaving not only its target sequence but also one containing A:A or T:T mismatches at the central base pair in the target sequence. The cleavage of targets containing these mismatches is as efficient as cleavage of the correct target sequence containing a central A:T base pair. The cleavage mechanism does not apparently use a base flipping mechanism as found for some other type II restriction endonuclease recognizing similarly degenerate target sequences. The ability of TseI to cleave targets with mismatches means that it can cleave the unusual DNA hairpin structures containing A:A or T:T mismatches formed by the repetitive DNA sequences associated with Huntington's disease (CAG repeats) and myotonic dystrophy type 1 (CTG repeats)
Fully Automatic Expression-Invariant Face Correspondence
We consider the problem of computing accurate point-to-point correspondences
among a set of human face scans with varying expressions. Our fully automatic
approach does not require any manually placed markers on the scan. Instead, the
approach learns the locations of a set of landmarks present in a database and
uses this knowledge to automatically predict the locations of these landmarks
on a newly available scan. The predicted landmarks are then used to compute
point-to-point correspondences between a template model and the newly available
scan. To accurately fit the expression of the template to the expression of the
scan, we use as template a blendshape model. Our algorithm was tested on a
database of human faces of different ethnic groups with strongly varying
expressions. Experimental results show that the obtained point-to-point
correspondence is both highly accurate and consistent for most of the tested 3D
face models
- …