74 research outputs found

    Qualitative SERS analysis of G-quadruplex DNAs using selective stabilising ligands

    Get PDF
    Nucleic acids are of key biological importance due to their range of functions and ability to form various different structures, with an example of emerging significance being quadruplexes formed by guanine-rich sequences. These guanine rich sequences are found in different regions of the genome such as telomeres, gene promoters and introns and UTRs of mRNAs. Here a new approach has been developed that utilises surface enhanced Raman scattering (SERS) for the detection of the formation of G-quadruplexes. Three G-quadruplex stabilising ligands that each have their own unique SERS response were used in this study and their ability to act as reporters assessed. A SERS response was only obtained from the ligands in the absence of G-quadruplex formation. This resulted in an "on/off" method which was successfully used to qualitatively detect the formation of G-quadruplex using quadruplex-forming sequences such as human telomeric and C-MYC promoter DNAs. The unique SERS spectra of each stabilising ligand offer the potential for use of SERS to study higher order DNA structures. This work shows that the ligands used can act simultaneously as a potential therapeutic stabilising agent and a SERS reporter, therefore allowing the use of SERS as a method of analysis of the formation of G-quadruplex DNAs

    Specific Recognition of Promoter G-Quadruplex DNAs by Small Molecule Ligands and Light-up Probes

    Get PDF
    G-Quadruplexes (G4s) are four-stranded nucleic acid structures whose underlying G-rich sequences are present across the chromosome and transcriptome. These highly structured elements are known to regulate many key biological functions such as replication, transcription, translation, and genomic stability, thereby providing an additional layer of gene regulation. G4s are structurally dynamic and diverse, and they can fold into numerous topologies. They are potential targets for small molecules, which can modulate their functions. To this end, myriad classes of small molecules have been developed and studied for their ability to bind and stabilize these unique structures. Though many of them can selectively target G4s over duplex DNA, only a few of them can distinguish one G4 topology from others. Design and development of G4-specific ligands are challenging owing to the subtle structural variations among G4 structures. However, screening assays and computational methods have identified a few classes of ligands that preferentially or specifically target the G4 topology of interest over others. This review focuses on the small molecules and fluorescent probes that specifically target human promoter G4s associated with oncogenes. Targeting promoter G4s could circumvent the issues such as undruggability and development of drug resistance associated with the protein targets. The ligands discussed here highlight that development of G4-specific ligands is an achievable goal in spite of the limited structural data available. The future goal is to pursue the development of G4-specific ligands endowed with drug-like properties for G4-based therapeutics and diagnostics

    Reactivity-Dependent PCR: Direct, Solution-Phase in Vitro Selection for Bond Formation

    Get PDF
    In vitro selection is a key component of efforts to discover functional nucleic acids and small molecules from libraries of DNA, RNA, and DNA-encoded small molecules. Such selections have been widely used to evolve RNA and DNA catalysts and, more recently, to discover new reactions from DNA-encoded libraries of potential substrates. While effective, current strategies for selections of bond-forming and bond-cleaving reactivity are generally indirect, require the synthesis of biotin-linked substrates, and involve multiple solution-phase and solid-phase manipulations. In this work we report the successful development and validation of reactivity-dependent PCR (RDPCR), a new method that more directly links bond formation or bond cleavage with the amplification of desired sequences and that obviates the need for solid-phase capture, washing, and elution steps. We show that RDPCR can be used to select for bond formation in the context of reaction discovery and for bond cleavage in the context of protease activity profiling.Chemistry and Chemical Biolog

    Probing the Binding Interactions between Chemically Modified siRNAs and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations

    No full text
    The use of chemical modifications in small interfering RNAs (siRNAs) is warranted to impart drug-like properties. However, certain chemical modifications especially those on the sugar have deleterious effects on the RNA interference (RNAi) when they are placed at key positions in the seed region of an siRNA guide strand. In order to probe the effect of chemically modified siRNAs [(2′-<i>O</i>-methyl, 4′-<i>C</i>-aminomethyl-2′-<i>O</i>-methyl, 2′-<i>O</i>-(2-methoxyethyl), and 2′-<i>O</i>-benzyl] on human Argonaute 2 (hAGO2), the catalytic engine of RNAi, we have developed a model of its open conformation. Results from microsecond MD simulations of 15 different siRNA−hAGO2 complexes provide insights about how the key noncovalent interactions and conformational changes at the seed region are modulated, depending upon the nature and position of chemical modifications. Such modification induced structural changes can affect siRNA loading into hAGO2, which may influence RNAi activity. Our studies show that microsecond MD simulations can provide useful information for the design of therapeutically relevant siRNAs
    corecore