1,970 research outputs found
Search for Sterile Neutrinos with a Radioactive Source at Daya Bay
The far site detector complex of the Daya Bay reactor experiment is proposed
as a location to search for sterile neutrinos with > eV mass. Antineutrinos
from a 500 kCi 144Ce-144Pr beta-decay source (DeltaQ=2.996 MeV) would be
detected by four identical 20-ton antineutrino targets. The site layout allows
flexible source placement; several specific source locations are discussed. In
one year, the 3+1 sterile neutrino hypothesis can be tested at essentially the
full suggested range of the parameters Delta m^2_{new} and sin^22theta_{new}
(90% C.L.). The backgrounds from six nuclear reactors at >1.6 km distance are
shown to be manageable. Advantages of performing the experiment at the Daya Bay
far site are described
Recombination in polymer-fullerene bulk heterojunction solar cells
Recombination of photogenerated charge carriers in polymer bulk
heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and
the fill factor (FF). Identifying the mechanism of recombination is, therefore,
fundamentally important for increasing the power conversion efficiency. Light
intensity and temperature dependent current-voltage measurements on polymer BHJ
cells made from a variety of different semiconducting polymers and fullerenes
show that the recombination kinetics are voltage dependent and evolve from
first order recombination at short circuit to bimolecular recombination at open
circuit as a result of increasing the voltage-dependent charge carrier density
in the cell. The "missing 0.3V" inferred from comparison of the band gaps of
the bulk heterojunction materials and the measured open circuit voltage at room
temperature results from the temperature dependence of the quasi-Fermi-levels
in the polymer and fullerene domains - a conclusion based upon the fundamental
statistics of Fermions.Comment: Accepted for publication in Physical Review B.
http://prb.aps.org/accepted/B/6b07cO3aHe71bd1b149e1425e58bf2868cda2384d?ajax=1&height=500&width=50
A Compact Approximate Solution to the Friedel-Anderson Impuriy Problem
An approximate groundstate of the Anderson-Friedel impurity problem is
presented in a very compact form. It requires solely the optimization of two
localized electron states and consists of four Slater states (Slater
determinants). The resulting singlet ground state energy lies far below the
Anderson mean field solution and agrees well with the numerical results by
Gunnarsson and Schoenhammer, who used an extensive 1/N_{f}-expansion for a spin
1/2 impurity with double occupancy of the impurity level.
PACS: 85.20.Hr, 72.15.R
Dimerization structures on the metallic and semiconducting fullerene tubules with half-filled electrons
Possible dimerization patterns and electronic structures in fullerene tubules
as the one-dimensional pi-conjugated systems are studied with the extended
Su-Schrieffer-Heeger model. We assume various lattice geometries, including
helical and nonhelical tubules. The model is solved for the half-filling case
of -electrons. (1) When the undimerized systems do not have a gap, the
Kekule structures prone to occur. The energy gap is of the order of the room
temperatures at most and metallic properties would be expected. (2) If the
undimerized systems have a large gap (about 1eV), the most stable structures
are the chain-like distortions where the direction of the arranged
trans-polyacetylene chains is along almost the tubular axis. The electronic
structures are ofsemiconductors due to the large gap.Comment: submitted to Phys. Rev. B, pages 15, figures 1
Adaptive whitening in neural populations with gain-modulating interneurons
Statistical whitening transformations play a fundamental role in many
computational systems, and may also play an important role in biological
sensory systems. Existing neural circuit models of adaptive whitening operate
by modifying synaptic interactions; however, such modifications would seem both
too slow and insufficiently reversible. Motivated by the extensive neuroscience
literature on gain modulation, we propose an alternative model that adaptively
whitens its responses by modulating the gains of individual neurons. Starting
from a novel whitening objective, we derive an online algorithm that whitens
its outputs by adjusting the marginal variances of an overcomplete set of
projections. We map the algorithm onto a recurrent neural network with fixed
synaptic weights and gain-modulating interneurons. We demonstrate numerically
that sign-constraining the gains improves robustness of the network to
ill-conditioned inputs, and a generalization of the circuit achieves a form of
local whitening in convolutional populations, such as those found throughout
the visual or auditory systems.Comment: 20 pages, 10 figures (incl. appendix). To appear in the Proceedings
of the 40th International Conference on Machine Learnin
Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO
The microscopic description of the spin-Peierls transition in pure and doped
CuGeO_3 is developed taking into account realistic details of crystal
structure. It it shown that the presence of side-groups (here Ge) strongly
influences superexchange along Cu-O-Cu path, making it antiferromagnetic.
Nearest-neighbour and next-nearest neighbour exchange constants and
are calculated. Si doping effectively segments the CuO_2-chains
leading to or even slightly ferromagnetic. Strong
sensitivity of the exchange constants to Cu-O-Cu and (Cu-O-Cu)-Ge angles may be
responsible for the spin-Peierls transition itself (``bond-bending mechanism''
of the transition). The nature of excitations in the isolated and coupled
spin-Peierls chains is studied and it is shown that topological excitations
(solitons) play crucial role. Such solitons appear in particular in doped
systems (Cu_{1-x}Zn_xGeO_3, CuGe_{1-x}Si_xO_3) which can explain the
phase diagram.Comment: 7 pages, revtex, 7 Postscript figure
- …