29,286 research outputs found
Nonlinear parallel momentum transport in strong turbulence
Most existing theoretical studies of momentum transport focus on calculating
the Reynolds stress based on quasilinear theory, without considering the
\emph{nonlinear} momentum flux-.
However, a recent experiment on TORPEX found that the nonlinear toroidal
momentum flux induced by blobs makes a significant contribution as compared to
the Reynolds stress [Labit et al., Phys. Plasmas {\bf 18}, 032308 (2011)]. In
this work, the nonlinear parallel momentum flux in strong turbulence is
calculated by using three dimensional Hasegawa-Mima equation. It is shown that
nonlinear diffusivity is smaller than quasilinear diffusivity from Reynolds
stress. However, the leading order nonlinear residual stress can be comparable
to the quasilinear residual stress, and so could be important to intrinsic
rotation in tokamak edge plasmas. A key difference from the quasilinear
residual stress is that parallel fluctuation spectrum asymmetry is not required
for nonlinear residual stress
Remarks on the Theory of Cosmological Perturbation
It is shown that the power spectrum defined in the Synchronous Gauge can not
be directly used to calculate the predictions of cosmological models on the
large-scale structure of universe, which should be calculated directly by a
suitable gauge-invariant power spectrum or the power spectrum defined in the
Newtonian Gauge.Comment: 13 pages, 1 figure, minor changes, to be published in Chinese Physics
Letter
Coherence measurements on Rydberg wave packets kicked by a half-cycle pulse
A kick from a unipolar half-cycle pulse (HCP) can redistribute population and
shift the relative phase between states in a radial Rydberg wave packet. We
have measured the quantum coherence properties following the kick, and show
that selected coherences can be destroyed by applying an HCP at specific times.
Quantum mechanical simulations show that this is due to redistribution of the
angular momentum in the presence of noise. These results have implications for
the storage and retrieval of quantum information in the wave packet.Comment: 4 pages, 4 figures (5 figure files
Temperature dependence and resonance effects in Raman scattering of phonons in NdFeAsOF single crystals
We report plane-polarized Raman scattering spectra of iron oxypnictide
superconductor NdFeAsOF single crystals with varying fluorine
content. The spectra exhibit sharp and symmetrical phonon lines with a weak
dependence on fluorine doping . The temperature dependence does not show any
phonon anomaly at the superconducting transition. The Fe related phonon
intensity shows a strong resonant enhancement below 2 eV. We associate the
resonant enhancement to the presence of an interband transition around 2 eV
observed in optical conductivity. Our results point to a rather weak coupling
between Raman-active phonons and electronic excitations in iron oxypnictides
superconductors.Comment: 4 pages, 3 figures, to appear in Phys. Rev.
Modification of nucleon properties in nuclear matter and finite nuclei
We present a model for the description of nuclear matter and finite nuclei,
and at the same time, for the study of medium modifications of nucleon
properties. The nucleons are described as nontopological solitons which
interact through the self-consistent exchange of scalar and vector mesons. The
model explicitly incorporates quark degrees of freedom into nuclear many-body
systems and provides satisfactory results on the nuclear properties. The
present model predicts a significant increase of the nucleon radius at normal
nuclear matter density. It is very interesting to see the nucleon properties
change from the nuclear surface to the nuclear interior.Comment: 22 pages, 10 figure
Probing the evolution of Stark wave packets by a weak half cycle pulse
We probe the dynamic evolution of a Stark wave packet in cesium using weak
half-cycle pulses (HCP's). The state-selective field ionization(SSFI) spectra
taken as a function of HCP delay reveal wave packet dynamics such as Kepler
beats, Stark revivals and fractional revivals. A quantum-mechanical simulation
explains the results as multi-mode interference induced by the HCP.Comment: 4 pages, incl. 3 figures, submitted to PR
Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors
We report for the first time general geometrical expressions for the angular
resolution of an arbitrary network of interferometric gravitational-wave (GW)
detectors when the arrival-time of a GW is unknown. We show explicitly elements
that decide the angular resolution of a GW detector network. In particular, we
show the dependence of the angular resolution on areas formed by projections of
pairs of detectors and how they are weighted by sensitivities of individual
detectors. Numerical simulations are used to demonstrate the capabilities of
the current GW detector network. We confirm that the angular resolution is poor
along the plane formed by current LIGO-Virgo detectors. A factor of a few to
more than ten fold improvement of the angular resolution can be achieved if the
proposed new GW detectors LCGT or AIGO are added to the network. We also
discuss the implications of our results for the design of a GW detector
network, optimal localization methods for a given network, and electromagnetic
follow-up observations.Comment: 13 pages, for Phys. Rev.
White matter hyperintensities and within-person variability in community-dwelling adults aged 60–64 years
Estimates of white matter hyperintensities (WMH) derived from T2-weighted MRI were investigated in relation to cognitive performance in 469 healthy community-dwelling adults aged 60–64 years. Frontal lobe WMH but not WMH from other brain regions (temporal, parietal, and occipital lobes, anterior and posterior horn, periventricular body) were associated with elevated within-person reaction time (RT) variability (trial to trial fluctuations in RT performance) but not performance on several other cognitive tasks including psychomotor speed, memory, and global cognition. The findings are consistent with the view that elevated within-person variability is related to neurobiological disturbance, and that attentional mechanisms supported by the frontal cortex play a key role in this type of variability
- …