3,195 research outputs found

    Single cell analysis shows decreasing FoxP3 and TGFβ1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes

    Get PDF
    Natural CD4+CD25+ regulatory T (CD4+CD25+ T reg) cells play a key role in the immunoregulation of autoimmunity. However, little is known about the interactions between CD4+CD25+ T reg cells and autoreactive T cells. This is due, in part, to the difficulty of using cell surface markers to identify CD4+CD25+ T reg cells accurately. Using a novel real-time PCR assay, mRNA copy number of FoxP3, TGFβ1, and interleukin (IL)-10 was measured in single cells to characterize and quantify CD4+CD25+ T reg cells in the nonobese diabetic (NOD) mouse, a murine model for type 1 diabetes (T1D). The suppressor function of CD4+CD25+CD62Lhi T cells, mediated by TGFβ, declined in an age-dependent manner. This loss of function coincided with a temporal decrease in the percentage of FoxP3 and TGFβ1 coexpressing T cells within pancreatic lymph node and islet infiltrating CD4+CD25+CD62Lhi T cells, and was detected in female NOD mice but not in NOD male mice, or NOR or C57BL/6 female mice. These results demonstrate that the majority of FoxP3-positive CD4+CD25+ T reg cells in NOD mice express TGFβ1 but not IL-10, and that a defect in the maintenance and/or expansion of this pool of immunoregulatory effectors is associated with the progression of T1D

    Baryon Junction Loops in HIJING/B\=Bv2.0 and the Baryon/Meson Anomaly at RHIC

    Full text link
    A new version, v2.0, of the HIJING/B\=B Monte Carlo nuclear collision event generator is introduced in order to explore further the possible role of baryon junctions loops in the baryon/meson anomaly (2 <pT<< p_{T} < 5 GeV/c) observed in 200A GeV Au+Au reactions at RHIC. We show that junction loops with an enhanced intrinsic kT1k_T\approx 1 GeV/c transverse momentum kick may provide a partial explanation of the anomaly as well as other important baryon stopping observables.Comment: 27 pages, Latex(revtex), 8 figure

    Predictions for p+p+Pb Collisions at sNN=5\sqrt{s_{NN}} = 5 TeV: Comparison with Data

    Full text link
    Predictions made in Albacete {\it et al} prior to the LHC p+p+Pb run at sNN=5\sqrt{s_{NN}} = 5 TeV are compared to currently available data. Some predictions shown here have been updated by including the same experimental cuts as the data. Some additional predictions are also presented, especially for quarkonia, that were provided to the experiments before the data were made public but were too late for the original publication are also shown here.Comment: 55 pages 35 figure

    Are we close to the QGP? - Hadrochemical vs. microscopic analysis of particle production in ultrarelativistic heavy ion collisions

    Get PDF
    Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.Comment: 12 pages, 4 figure

    Examine the species and beam-energy dependence of particle spectra using Tsallis Statistics

    Full text link
    Tsallis Statistics was used to investigate the non-Boltzmann distribution of particle spectra and their dependence on particle species and beam energy in the relativistic heavy-ion collisions at SPS and RHIC. Produced particles are assumed to acquire radial flow and be of non-extensive statistics at freeze-out. J/psi and the particles containing strangeness were examined separately to study their radial flow and freeze-out. We found that the strange hadrons approach equilibrium quickly from peripheral to central A+A collisions and they tend to decouple earlier from the system than the light hadrons but with the same final radial flow. These results provide an alternative picture of freeze-outs: a thermalized system is produced at partonic phase; the hadronic scattering at later stage is not enough to maintain the system in equilibrium and does not increase the radial flow of the copiously produced light hadrons. The J/psi in Pb+Pb collisions at SPS is consistent with early decoupling and obtains little radial flow. The J/psi spectra at RHIC are also inconsistent with the bulk flow profile.Comment: 12 pages, 4 figures, added several references and some clarifications et

    Do Search for Dibaryonic De - Excitations in Relativistic Nuclear Reactions

    Full text link
    Some odd characteristics are observed in the single particle distributions obtained from He+Li He + Li interactions at 4.5AGeV/c 4.5 AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di-pionic signals of the dibaryonic orbital de-excitations are analyzed in the frame of the MIT - bag Model and a Monte Carlo simulation.The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. Key words: Relativistic nuclear interactions negative pions, negative kaons, di-pions , streamer chamber, dibaryons, MIT - bag model PACS codes: 25.75.+r,14.40.Aq,14.20.Pt,12.40.AsComment: 17 pages,LATEX, preprint ICTP -243 1993,figures available by reques

    Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study

    Full text link
    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to ~4 nm wide and ~10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g. ~2000 W/m-K @400K for a 1.5 nm {\times} 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly-shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30{\deg} gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.Comment: 13 pages, 5 figures, slightly expanded from the published version on Nano Lett. with some additional note
    corecore