81 research outputs found

    ZNF384 (zinc finger protein 384)

    Get PDF
    Review on ZNF384 (zinc finger protein 384), with data on DNA, on the protein encoded, and where the gene is implicated

    t(12;19)(p13;p13)

    Get PDF
    Review on t(12;19)(p13;p13), with data on clinics, and the genes involved

    t(12;17)(p13;q11)

    Get PDF
    Review on t(12;17)(p13;q11), with data on clinics, and the genes involved

    t(12;22)(p13;q12)

    Get PDF
    Review on t(12;22)(p13;q12), with data on clinics, and the genes involved

    Comprehensive analysis of mitochondrial and nuclear DNA variations in patients affected by hemoglobinopathies: a pilot study

    Get PDF
    The hemoglobin disorders are the most common single gene disorders in the world. Previous studies have suggested that they are deeply geographically structured and a variety of genetic determinants influences different clinical phenotypes between patients inheriting identical β-globin gene mutations. In order to get new insights into the heterogeneity of hemoglobin disorders, we investigated the molecular variations on nuclear genes (i.e. HBB, HBG2, BCL11A, HBS1L and MYB) and mitochondrial DNA control region. This pilot study was carried out on 53 patients belonging to different continents and molecularly classified in 4 subgroup: β-thalassemia (β+/β+, β0/β0 and β+/β0)(15), sickle cell disease (HbS/HbS)(20), sickle cell/β-thalassemia (HbS/β+ or HBS/β0)(10), and non-thalassemic compound heterozygous (HbS/HbC, HbO-Arab/HbC)(8). This comprehensive phylogenetic analysis provided a clear separation between African and European patients either in nuclear or mitochondrial variations. Notably, informing on the phylogeographic structure of affected individuals, this accurate genetic stratification, could help to optimize the diagnostic algorithm for patients with uncertain or unknown origin

    Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias

    Get PDF
    Nucleophosmin (NPM) is a ubiquitously expressed nucleolar phoshoprotein which shuttles continuously between the nucleus and cytoplasm. Many findings have revealed a complex scenario of NPM functions and interactions, pointing to proliferative and growth-suppressive roles of this molecule. The gene NPM1 that encodes for nucleophosmin (NPMI) is translocated or mutated in various lymphomas and leukemias, forming fusion proteins (NPM-ALK, NPM-RARa, NPM-MLF1) or NPM mutant products. Here, we review the structure and functions of NPM, as well as the biological, clinical and pathological features of human hematologic malignancies with NPM1 gene alterations. NPM-ALK indentifies a new category of T/Null lymphomas with distinctive molecular and clinico-pathological features, that is going to be included as a novel disease entity (ALK+ anaplastic large cell lymphoma) in the new WHO classification of lymphoid neoplasms. NPM1 mutations occur specifically in about 30% of adult de novo AML and cause aberrant cytoplasmic expression of NPM (hence the term NPMc+ AML). NPMc+ AML associates with normal karyotpe, and shows wide morphological spectrum, multilineage involvement, a unique gene expression signature, a high frequency of FLT3-internal tandem duplications, and distinctive clinical and prognostic features. The availability of specific antibodies and molecular techniques for the detection of NPM1 gene alterations has an enormous impact in the biological study diagnosis, prognostic stratification, and monitoring of minimal residual disease of various lymphomas and leukemias. The discovery of NPM1 gene alterations also represents the rationale basis for development of molecular targeted drugs

    Genomic and clinical findings in myeloid neoplasms with PDGFRB rearrangement

    Get PDF
    Platelet-derived growth factor receptor B (PDGFRB) gene rearrangements define a unique subgroup of myeloid and lymphoid neoplasms frequently associated with eosinophilia and characterized by high sensitivity to tyrosine kinase inhibition. To date, various PDGFRB/5q32 rearrangements, involving at least 40 fusion partners, have been reported. However, information on genomic and clinical features accompanying rearrangements of PDGFRB is still scarce. Here, we characterized a series of 14 cases with a myeloid neoplasm using cytogenetic, single nucleotide polymorphism array, and next-generation sequencing. We identified nine PDGFRB translocation partners, including the KAZN gene at 1p36.21 as a novel partner in a previously undescribed t(1;5)(p36;q33) chromosome change. In all cases, the PDGFRB recombination was the sole cytogenetic abnormality underlying the phenotype. Acquired somatic variants were mainly found in clinically aggressive diseases and involved epigenetic genes (TET2, DNMT3A, ASXL1), transcription factors (RUNX1 and CEBPA), and signaling modulators (HRAS). By using both cytogenetic and nested PCR monitoring to evaluate response to imatinib, we found that, in non-AML cases, a low dosage (100–200 mg) is sufficient to induce and maintain longstanding hematological, cytogenetic, and molecular remissions

    SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>SET-NUP214 </it>fusion resulting from a recurrent cryptic deletion, del(9)(q34.11q34.13) has recently been described in T-cell acute lymphoblastic leukemia (T-ALL) and in one case of acute myeloid leukemia (AML). The fusion protein appears to promote elevated expression of <it>HOXA </it>cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for <it>SET-NUP214 </it>expression to find model systems that might help to elucidate the cellular function of this fusion gene.</p> <p>Results</p> <p>Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the <it>SET(TAF-</it>Iβ)-<it>NUP214 </it>fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two <it>TAF-</it>I isoforms revealed that the cell lines also expressed <it>TAF-</it>Iα-<it>NUP214 </it>mRNA. Results of fluorescence in situ hybridization (FISH) and array-based copy number analysis were both consistent with del(9)(q34.11q34.13) as described. Quantitative genomic PCR also confirmed loss of genomic material between <it>SET </it>and <it>NUP214 </it>in both cell lines. Genomic sequencing localized the breakpoints of the <it>SET </it>gene to regions downstream of the stop codon and to <it>NUP214 </it>intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein.</p> <p>Conclusion</p> <p>Cell lines LOUCY and MEGAL express the recently described <it>SET-NUP214 </it>fusion gene. Of special note is that the formation of the <it>SET </it>exon 7/<it>NUP214 </it>exon 18 gene transcript requires alternative splicing as the <it>SET </it>breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for <it>SET-NUP214 </it>studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.</p

    New somatic TERT promoter variants enhance the Telomerase activity in Glioblastoma

    Get PDF
    The catalytic activity of human Telomerase Reverse Transcriptase (TERT) compensates for the loss of telomere length, eroded during each cell cycle, to ensure a correct division of stem and germinal cells. In human tumors, ectopic TERT reactivation, most frequently due to hotspot mutations in the promoter region (TERTp), i.e. c.1-124 C &gt; T, c.1-146 C &gt; T, confers a proliferative advantage to neoplastic cells. In gliomas, TERTp mutations (TERTpmut) mainly occur in oligodendroglioma and glioblastoma. We screened, for TERTp hotspot mutations, 301 adult patients with gliomas and identified heterozygous mutations in 239 cases: 94% of oligodendroglioma, 85% of glioblastoma, and 37.5% of diffuse/anaplastic astrocytoma. Besides the recurrent c.1-124 C &gt; T and c.1-146 C &gt; T, two cases of glioblastoma harbored novel somatic TERTp variants, which consisted of a tandem duplications of 22 nucleotides, i.e. a TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, both located downstream c.1-124 C &gt; T and c.1-146 C &gt; T. In silico analysis predicted the formation of 119 and 108 new transcription factor's recognition sites for TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, respectively. TERTp duplications (TERTpdup) mainly affected the binding capacity of two transcription factors' families, i.e. the members of the E-twenty-six and the Specificity Protein/KrĂĽppel-Like Factor groups. In fact, these new TERTpdup significantly enhanced the E-twenty-six transcription factors' binding capacity, which is also typically increased by the two c.1-124 C &gt; T/c.1-146 C &gt; T hotspot TERTpmut. On the other hand, they were distinguished by enhanced affinity for the KrĂĽppel proteins. The luciferase assay confirmed that TERTpdup behaved as gain-of-function mutations causing a 2,3-2,5 fold increase of TERT transcription. The present study provides new insights into TERTp mutational spectrum occurring in central nervous system tumors, with the identification of new recurrent somatic gain-of-function mutations, occurring in 0.8% of glioblastoma IDH-wildtype
    • …
    corecore