10,167 research outputs found

    An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow

    Get PDF
    In this paper we consider the Hamiltonian formulation of the equations of incompressible ideal fluid flow from the point of view of optimal control theory. The equations are compared to the finite symmetric rigid body equations analyzed earlier by the authors. We discuss various aspects of the Hamiltonian structure of the Euler equations and show in particular that the optimal control approach leads to a standard formulation of the Euler equations -- the so-called impulse equations in their Lagrangian form. We discuss various other aspects of the Euler equations from a pedagogical point of view. We show that the Hamiltonian in the maximum principle is given by the pairing of the Eulerian impulse density with the velocity. We provide a comparative discussion of the flow equations in their Eulerian and Lagrangian form and describe how these forms occur naturally in the context of optimal control. We demonstrate that the extremal equations corresponding to the optimal control problem for the flow have a natural canonical symplectic structure.Comment: 6 pages, no figures. To appear in Proceedings of the 39th IEEEE Conference on Decision and Contro

    Generalized poisson brackets and nonlinear Liapunov stability application to reduces mhd

    Get PDF
    A method is presented for obtaining Liapunov functionals (LF) and proving nonlinear stability. The method uses the generalized Poisson bracket (GPB) formulation of Hamiltonian dynamics. As an illustration, certain stationary solutions of ideal reduced MHD (RMHD) are shown to be nonlinearly stable. This includes Grad-Shafranov and Alfven solutions

    Spatiotemporal patterns and agro-ecological risk factors for cutaneous and renal glomerular vasculopathy (Alabama Rot) in dogs in the UK

    Get PDF
    Seasonal outbreaks of cutaneous and renal glomerular vasculopathy (CRGV) have been reported annually in UK dogs since 2012, yet the aetiology of the disease remains unknown. The objectives of this study were to explore whether any breeds had an increased or decreased risk of being diagnosed with CRGV, and to report on age and sex distributions of CRGV cases occurring in the UK. Multivariable logistic regression was used to compare 101 dogs diagnosed with CRGV between November 2012 and May 2017 with a denominator population of 446,453 dogs from the VetCompass database. Two Kennel Club breed groups—hounds (odds ratio (OR) 10.68) and gun dogs (OR 9.69)—had the highest risk of being diagnosed with CRGV compared with terriers, while toy dogs were absent from among CRGV cases. Females were more likely to be diagnosed with CRGV (OR 1.51) as were neutered dogs (OR 3.36). As well as helping veterinarians develop an index of suspicion for the disease, better understanding of the signalment risk factors may assist in the development of causal models for CRGV and help identify the aetiology of the disease

    Averaged Template Matching Equations

    Get PDF
    By exploiting an analogy with averaging procedures in fluid dynamics, we present a set of averaged template matching equations. These equations are analogs of the exact template matching equations that retain all the geometric properties associated with the diffeomorphismgrou p, and which are expected to average out small scale features and so should, as in hydrodynamics, be more computationally efficient for resolving the larger scale features. Froma geometric point of view, the new equations may be viewed as coming from a change in norm that is used to measure the distance between images. The results in this paper represent first steps in a longer termpro gram: what is here is only for binary images and an algorithm for numerical computation is not yet operational. Some suggestions for further steps to develop the results given in this paper are suggested

    An integrable shallow water equation with peaked solitons

    Full text link
    We derive a new completely integrable dispersive shallow water equation that is biHamiltonian and thus possesses an infinite number of conservation laws in involution. The equation is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler's equations in the shallow water regime. The soliton solution for this equation has a limiting form that has a discontinuity in the first derivative at its peak.Comment: LaTeX file. Figure available from authors upon reques

    Superembeddings, Non-Linear Supersymmetry and 5-branes

    Get PDF
    We examine general properties of superembeddings, i.e., embeddings of supermanifolds into supermanifolds. The connection between an embedding procedure and the method of non-linearly realised supersymmetry is clarified, and we demonstrate how the latter arises as a special case of the former. As an illustration, the super-5-brane in 7 dimensions, containing a self-dual 3-form world-volume field strength, is formulated in both languages, and provides an example of a model where the embedding condition does not suffice to put the theory on-shell.Comment: plain tex, 28 p

    Signalment risk factors for cutaneous and renal glomerular vasculopathy (Alabama rot) in dogs in the UK

    Get PDF
    Seasonal outbreaks of cutaneous and renal glomerular vasculopathy (CRGV) have been reported annually in UK dogs since 2012, yet the aetiology of the disease remains unknown. The objectives of this study were to explore whether any breeds had an increased or decreased risk of being diagnosed with CRGV, and to report on age and sex distributions of CRGV cases occurring in the UK. Multivariable logistic regression was used to compare 101 dogs diagnosed with CRGV between November 2012 and May 2017 with a denominator population of 446,453 dogs from the VetCompass database. Two Kennel Club breed groups—hounds (odds ratio (OR) 10.68) and gun dogs (OR 9.69)—had the highest risk of being diagnosed with CRGV compared with terriers, while toy dogs were absent from among CRGV cases. Females were more likely to be diagnosed with CRGV (OR 1.51) as were neutered dogs (OR 3.36). As well as helping veterinarians develop an index of suspicion for the disease, better understanding of the signalment risk factors may assist in the development of causal models for CRGV and help identify the aetiology of the disease

    Hamiltonian approach to hybrid plasma models

    Full text link
    The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.Comment: 27 pages, no figures. To appear in J. Phys.

    Breakdown of disordered media by surface loads

    Full text link
    We model an interface layer connecting two parts of a solid body by N parallel elastic springs connecting two rigid blocks. We load the system by a shear force acting on the top side. The springs have equal stiffness but are ruptured randomly when the load reaches a critical value. For the considered system, we calculate the shear modulus, G, as a function of the order parameter, \phi, describing the state of damage, and also the ``spalled'' material (burst) size distribution. In particular, we evaluate the relation between the damage parameter and the applied force and explore the behaviour in the vicinity of material breakdown. Using this simple model for material breakdown, we show that damage, caused by applied shear forces, is analogous to a first-order phase transition. The scaling behaviour of G with \phi is explored analytically and numerically, close to \phi=0 and \phi=1 and in the vicinity of \phi_c, when the shear load is close but below the threshold force that causes material breakdown. Our model calculation represents a first approximation of a system subject to wear induced loads.Comment: 15 pages, 7 figure

    Overcharging: The Crucial Role of Excluded Volume

    Full text link
    In this Letter we investigate the mechanism for overcharging of a single spherical colloid in the presence of aqueous salts within the framework of the primitive model by molecular dynamics (MD) simulations as well as integral-equation theory. We find that the occurrence and strength of overcharging strongly depends on the salt-ion size, and the available volume in the fluid. To understand the role of the excluded volume of the microions, we first consider an uncharged system. For a fixed bulk concentration we find that upon increasing the fluid particle size one strongly increases the local concentration nearby the colloidal surface and that the particles become laterally ordered. For a charged system the first surface layer is built up predominantly by strongly correlated counterions. We argue that this a key mechanism to produce overcharging with a low electrostatic coupling, and as a more practical consequence, to account for charge inversion with monovalent aqueous salt ions.Comment: 7 pages, 3 figs (4 EPS files). To appear in Europhysics Letter
    corecore