1,231 research outputs found
Magnetic properties of Gd_xY_{1-x}Fe_2Zn_{20}: dilute, large, moments in a nearly ferromagnetic Fermi liquid
Single crystals of the dilute, rare earth bearing, pseudo-ternary series,
Gd_xY_{1-x}Fe_2Zn_{20} were grown out of Zn-rich solution. Measurements of
magnetization, resistivity and heat capacity on Gd_xY_{1-x}Fe_2Zn_{20} samples
reveal ferromagnetic order of Gd^{3+} local moments across virtually the whole
series (). The magnetic properties of this series, including the
ferromagnetic ordering, the reduced saturated moments at base temperature, the
deviation of the susceptibilities from Curie-Weiss law and the anomalies in the
resistivity, are understood within the frame work of dilute,
moments (Gd^{3+}) embedded in a nearly ferromagnetic Fermi liquid
(YFe_2Zn_{20}). The s-d model is employed to further explain the variation of
with x as well as the temperature dependences of of the
susceptibilities
Surface energy and stability of stress-driven discommensurate surface structures
A method is presented to obtain {\it ab initio} upper and lower bounds to
surface energies of stress-driven discommensurate surface structures, possibly
non-periodic or exhibiting very large unit cells. The instability of the
stressed, commensurate parent of the discommensurate structure sets an upper
bound to its surface energy; a lower bound is defined by the surface energy of
an ideally commensurate but laterally strained hypothetical surface system. The
surface energies of the phases of the Si(111):Ga and Ge(111):Ga systems and the
energies of the discommensurations are determined within eV.Comment: 4 pages RevTeX. 2 Figures not included. Ask for a hard copy (through
regular mail) to [email protected]
Large Scale Electronic Structure Calculations with Multigrid Acceleration
We have developed a set of techniques for performing large scale ab initio
calculations using multigrid accelerations and a real-space grid as a basis.
The multigrid methods permit efficient calculations on ill-conditioned systems
with long length scales or high energy cutoffs. The technique has been applied
to systems containing up to 100 atoms, including a highly elongated diamond
cell, an isolated C molecule, and a 32-atom cell of GaN with the Ga
d-states in valence. The method is well suited for implementation on both
vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur
First-Principles Studies of Hydrogenated Si(111)--77
The relaxed geometries and electronic properties of the hydrogenated phases
of the Si(111)-77 surface are studied using first-principles molecular
dynamics. A monohydride phase, with one H per dangling bond adsorbed on the
bare surface is found to be energetically favorable. Another phase where 43
hydrogens saturate the dangling bonds created by the removal of the adatoms
from the clean surface is found to be nearly equivalent energetically.
Experimental STM and differential reflectance characteristics of the
hydrogenated surfaces agree well with the calculated features.Comment: REVTEX manuscript with 3 postscript figures, all included in uu file.
Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm
Inheritance of fertility in broiler chickens
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Variation of the magnetic ordering in GdTZn (T= Fe, Ru, Os, Co, Rh and Ir) and its correlation with the electronic structure of isostructural YTZn
Magnetization, resistivity and specific heat measurements were performed on
the solution-grown, single crystals of six GdTZn (T = Fe, Ru, Os,
Co, Rh and Ir) compounds, as well as their Y analogues. For the Gd compounds,
the Fe column members manifest a ferromagnetic (FM) ground state (with an
enhanced Curie temperature, , for T = Fe and Ru), whereas the
Co column members manifest an antiferromagnetic (AFM) ground state.
Thermodynamic measurements on the YTZn revealed that the enhanced
for GdFeZn and GdRuZn can be understood
within the framework of Heisenberg moments embedded in a nearly ferromagnetic
Fermi liquid. Furthermore, electronic structure calculations indicate that this
significant enhancement is due to large, close to the Stoner FM criterion,
transition metal partial density of states at Fermi level, whereas the change
of FM to AFM ordering is associated with filling of electronic states with two
additional electrons per formula unit. The degree of this sensitivity is
addressed by the studies of the pseudo-ternary compounds
Gd(FeCo)Zn and Y(FeCo)Zn which
clearly reveal the effect of 3d band filling on their magnetic properties.Comment: 32 pages, 28 figure
The flight feather moult pattern of the bearded vulture (Gypaetus barbatus).
Moult is an extremely time-consuming and energy-demanding task for large birds. In addition, there is a trade-off between the time devoted to moulting and that invested in other activities such as breeding and/or territory exploration. Moreover, it takes a long time to grow a long feather in large birds, and large birds that need to fly while moulting cannot tolerate large gaps in the wing, but only one or two simultaneously growing feathers. As a consequence, large birds take several years to complete a full moult cycle, and they resume the moult process during suboptimal conditions. A clear example of this pattern is the Bearded Vulture (Gypaetus barbatus), which needs 2-3 years for changing all flight feathers. Here we describe the sequence, extent, and timing of moult of 124 Bearded Vultures in detail for the first time. We found that extent and timing of flight feather moult was different between age classes. Subadults (from 3rd to 5th calendar year) started moult, on average, in early March, whereas adults only started moult, on average, in late April, possibly due to breeding requirements. Second calendar year individuals delayed onset of moult until the middle of May. In general, the moult lasted until November, and although adults started to moult later than subadults, they moulted more feathers. Subadults needed 3 years for moulting all flight feathers, whereas adults normally completed it in 2 years
Species and abundance of ectoparasitic flies (Diptera) in pied flycatcher nests in Fennoscandia
Peer reviewe
Foraging Fidelity as a Recipe for a Long Life: Foraging Strategy and Longevity in Male Southern Elephant Seals
Identifying individual factors affecting life-span has long been of interest for biologists and demographers: how do some individuals manage to dodge the forces of mortality when the vast majority does not? Answering this question is not straightforward, partly because of the arduous task of accurately estimating longevity in wild animals, and of the statistical difficulties in correlating time-varying ecological covariables with a single number (time-to-event). Here we investigated the relationship between foraging strategy and life-span in an elusive and large marine predator: the Southern Elephant Seal (Mirounga leonina). Using teeth recovered from dead males on Ăźles Kerguelen, Southern Ocean, we first aged specimens. Then we used stable isotopic measurements of carbon () in dentin to study the effect of foraging location on individual life-span. Using a joint change-point/survival modelling approach which enabled us to describe the ontogenetic trajectory of foraging, we unveiled how a stable foraging strategy developed early in life positively covaried with longevity in male Southern Elephant Seals. Coupled with an appropriate statistical analysis, stable isotopes have the potential to tackle ecological questions of long standing interest but whose answer has been hampered by logistic constraints
- âŠ