614 research outputs found

    Bonding in MgSi and AlMgSi Compounds Relevant to AlMgSi Alloys

    Full text link
    The bonding and stability of MgSi and AlMgSi compounds relevant to AlMgSi alloys is investigated with the use of (L)APW+(lo) DFT calculations. We show that the β\beta and β\beta'' phases found in the precipitation sequence are characterised by the presence of covalent bonds between Si-Si nearest neighbour pairs and covalent/ionic bonds between Mg-Si nearest neighbour pairs. We then investigate the stability of two recently discovered precipitate phases, U1 and U2, both containing Al in addition to Mg and Si. We show that both phases are characterised by tightly bound Al-Si networks, made possible by a transfer of charge from the Mg atoms.Comment: 11 pages, 30 figures, submitted to Phys. Rev.

    Quasi-molecular and atomic phases of dense solid hydrogen

    Full text link
    The high-pressure phases of solid hydrogen are of fundamental interest and relevant to the interior of giant planets; however, knowledge of these phases is far from complete. Particle swarm optimization (PSO) techniques were applied to a structural search, yielding hitherto unexpected high-pressure phases of solid hydrogen at pressures up to 5 TPa. An exotic quasi-molecular mC24 structure (space group C2/c, stable at 0.47-0.59 TPa) with two types of intramolecular bonds was predicted, providing a deeper understanding of molecular dissociation in solid hydrogen, which has been a mystery for decades. We further predicted the existence of two atomic phases: (i) the oC12 structure (space group Cmcm, stable at > 2.1 TPa), consisting of planar H3 clusters, and (ii) the cI16 structure, previously observed in lithium and sodium, stable above 3.5 TPa upon consideration of the zero-point energy. This work clearly revised the known zero-temperature and high-pressure (>0.47 TPa) phase diagram for solid hydrogen and has implications for the constituent structures of giant planets.Comment: accepted in The Journal of Physical Chemistr

    All electron and pseudopotential study of the spin polarization of the V (001) surface: LDA versus GGA

    Full text link
    The spin-polarization at the V(001) surface has been studied by using different local (LSDA) and semilocal (GGA) approximations to the exchange-correlation potential of DFT within two ab initio methods: the all-electron TB-LMTO-ASA and the pseudopotential LCAO code SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms). A comparative analysis is performed first for the bulk and then for a N-layer V(001) film (7 < N < 15). The LSDA approximation leads to a non magnetic V(001) surface with both theoretical models in agreement (disagreement) with magneto-optical Kerr (electron-capture spectroscopy) experiments. The GGA within the pseudopotential method needs thicker slabs than the LSDA to yield zero moment at the central layer, giving a high surface magnetization (1.70 Bohr magnetons), in contrast with the non magnetic solution obtained by means of the all-electron code.Comment: 12 pages, 1 figure. Latex gzipped tar fil

    Linear-response theory and lattice dynamics: a muffin-tin orbital approach

    Full text link
    A detailed description of a method for calculating static linear-response functions in the problem of lattice dynamics is presented. The method is based on density functional theory and it uses linear muffin-tin orbitals as a basis for representing first-order corrections to the one-electron wave functions. As an application we calculate phonon dispersions in Si and NbC and find good agreement with experiments.Comment: 18 pages, Revtex, 2 ps figures, uuencoded, gzip'ed, tar'ed fil

    Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study

    Get PDF
    The static and dynamic structure of liquid Al is studied using the orbital free ab-initio molecular dynamics method. Two thermodynamic states along the coexistence line are considered, namely T = 943 K and 1323 K for which X-ray and neutron scattering data are available. A new kinetic energy functional, which fulfills a number of physically relevant conditions is employed, along with a local first principles pseudopotential. In addition to a comparison with experiment, we also compare our ab-initio results with those obtained from conventional molecular dynamics simulations using effective interionic pair potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR

    Mechanical and Electronic Properties of MoS2_2 Nanoribbons and Their Defects

    Get PDF
    We present our study on atomic, electronic, magnetic and phonon properties of one dimensional honeycomb structure of molybdenum disulfide (MoS2_2) using first-principles plane wave method. Calculated phonon frequencies of bare armchair nanoribbon reveal the fourth acoustic branch and indicate the stability. Force constant and in-plane stiffness calculated in the harmonic elastic deformation range signify that the MoS2_2 nanoribbons are stiff quasi one dimensional structures, but not as strong as graphene and BN nanoribbons. Bare MoS2_2 armchair nanoribbons are nonmagnetic, direct band gap semiconductors. Bare zigzag MoS2_2 nanoribbons become half-metallic as a result of the (2x1) reconstruction of edge atoms and are semiconductor for minority spins, but metallic for the majority spins. Their magnetic moments and spin-polarizations at the Fermi level are reduced as a result of the passivation of edge atoms by hydrogen. The functionalization of MoS2_2 nanoribbons by adatom adsorption and vacancy defect creation are also studied. The nonmagnetic armchair nanoribbons attain net magnetic moment depending on where the foreign atoms are adsorbed and what kind of vacancy defect is created. The magnetization of zigzag nanoribbons due to the edge states is suppressed in the presence of vacancy defects.Comment: 11 pages, 5 figures, first submitted at November 23th, 200

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure

    Nanocarbon-Based photovoltaics

    Get PDF
    Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and superior thermal and photostability. Here we report on solar cells with active layers made solely of carbon nanomaterials that present the same advantages of conjugated polymer-based solar cells - namely solution processable, potentially flexible, and chemically tunable - but with significantly increased photostability and the possibility to revert photodegradation. The device active layer composition is optimized using ab-initio density functional theory calculations to predict type-II band alignment and Schottky barrier formation. The best device fabricated is composed of PC70BM fullerene, semiconducting single-walled carbon nanotubes and reduced graphene oxide. It achieves a power conversion efficiency of 1.3% - a record for solar cells based on carbon as the active material - and shows significantly improved lifetime than a polymer-based device. We calculate efficiency limits of up to 13% for the devices fabricated in this work, comparable to those predicted for polymer solar cells. There is great promise for improving carbon-based solar cells considering the novelty of this type of device, the superior photostability, and the availability of a large number of carbon materials with yet untapped potential for photovoltaics. Our results indicate a new strategy for efficient carbon-based, solution-processable, thin film, photostable solar cells

    Structural and vibrational study of pseudocubic CdIn2Se4 under compression

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp5077565We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se4 transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behavior of this compound under compression and the structural and compressibility trends in AB(2)Se(4) selenides are discussed.This study was supported by the Spanish government MEC under Grant Nos: MAT2013-46649-C4-3-P, MAT2013-46649-C4-2-P, MAT2010-21270-C04-03/04, and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045) and by Generalitat Valenciana (GVA-ACOMP-2013-1012). A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster, and also to S. Munoz-Rodriguez for providing a data-parsing application. J.A.S. acknowledges Juan de la Cierva fellowship program for financial support.Santamaría Pérez, D.; Gomis, O.; Pereira, ALJ.; Vilaplana Cerda, RI.; Popescu, C.; Sans Tresserras, JÁ.; Manjón Herrera, FJ.... (2014). Structural and vibrational study of pseudocubic CdIn2Se4 under compression. Journal of Physical Chemistry C. 118(46):26987-26999. https://doi.org/10.1021/jp5077565S26987269991184
    corecore