623 research outputs found

    Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells

    Get PDF
    Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H2O2 exposure was assessed to evaluate and to compare the potential protection of different FA against H2O2-induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H2O2 compared with other FA

    WCRP surface radiation budget shortwave data product description, version 1.1

    Get PDF
    Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures

    (-)-Epigallocatechin-3-gallate and hydroxytyrosol improved antioxidative and anti-inflammatory responses in bovine mammary epithelial cells

    Get PDF
    (-)-Epigallocatechin-3-gallate and hydroxytyrosol improved antioxidative and anti-inflammatory responses in bovine mammary epithelial cells L. Basiricò1, P. Morera1, D. Dipasquale1, R. Bernini1, L. Santi1, A. Romani2, N. Lacetera1 and U. Bernabucci1† 1Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via San Camillo de Lellis, 01100, Viterbo, Italy; 2Dipartimento di Statistica, Informatica, Applicazioni (DiSiA) “Giuseppe Parenti”, Università degli Studi di Firenze, via Morgagni 59, 50134, Firenze, Italy (-)-Epigallocatechin-3-gallate (EGCG), the major phenolic compound of green tea, and hydroxytyrosol (HTyr), a phenol found in olive oil, have received attention due to their wide-ranging health benefits. To date, there are no studies that report their effect in bovine mammary gland. Therefore, the aim of this study was to evaluate the anti-oxidative and anti-inflammatory effects of EGCG and HTyr in bovine mammary epithelial cell line (BME-UV1) and to compare their antioxidant and anti-inflammatory in vitro efficacy. Sample of EGCG was obtained from a commercially available green tea extract while pure HTyr was synthetized in our laboratories. The mammary oxidative stress and inflammatory responses were assessed by measuring the oxidative stress biomarkers and the gene expression of inflammatory cytokines. To evaluate the cellular antioxidant response, glutathione (GSH/ GSSH), γ-glutamylcysteine ligase activity, reactive oxygen species and malondialdehyde (MDA) production were measured after 48-h incubation of 50 μM EGCG or 50 μM of HTyr. Reactive oxygen species production after 3 h of hydrogen peroxide (50 μM H2O2) or lipopolysaccharide (20 μM LPS) exposure was quantified to evaluate and to compare the potential protection of EGCG and HTyr against H2O2-induced oxidative stress and LPS-induced inflammation. The anti-inflammatory activity of EGCG and HTyr was investigated by the evaluation of pro and anti-inflammatory interleukins (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10) messenger RNA abundance after treatment of cells for 3 h with 20 μM of LPS. Data were analyzed by one-way ANOVA. (-)-Epigallocatechin-3-gallate or HTyr treatments induced higher concentrations of intracellular GSH compared to control cells, matched by an increase of γ-glutamylcysteine ligase activity mainly in cells treated with HTyr. Interestingly, EGCG and HTyr prevented oxidative lipid damage in the BME-UV1 cells by a reduction of intracellular MDA levels. (-)-Epigallocatechin-3-gallate and HTyr were able to enhance cell resistance against H2O2-induced oxidative stress. It was found that EGCG and HTyr elicited a reduction of the three inflammatory cytokines TNF-α, IL-1β, IL-6 and an increase of the anti-inflammatory cytokine IL-10. Hydroxytyrosol has proved to be a strong antioxidant compound, and EGCG has shown mainly an anti-inflammatory profile. These results indicated that EGCG and HTyr may provide dual protection because they were able to attenuate oxidative stress and inflammatory responses, suggesting that these phenolic compounds are potential natural alternatives to be used in dairy cattle as feed supplement for reducing the development of oxidative and inflammatory processes related to parturition or as topical treatments for the control of bovine intramammary inflammation. Animal (2019), 13:12, pp 2847–2856Ministry for education, University and Research of Italy (MIUR) for financial support (Law 232/216, Departments of Excellence)

    Sediment grain-size and loss-on-ignition analyses from 2002 Englebright Lake coring and sampling campaigns

    Get PDF
    This report presents sedimentologic data from three 2002 sampling campaigns conducted in Englebright Lake on the Yuba River in northern California. This work was done to assess the properties of the material deposited in the reservoir between completion of Englebright Dam in 1940 and 2002, as part of the Upper Yuba River Studies Program. Included are the results of grain-size-distribution and loss-on-ignition analyses for 561 samples, as well as an error analysis based on replicate pairs of subsamples

    Mismatch-repair protein expression in high-grade gliomas: A large retrospective multicenter study

    Get PDF
    Background: DNA mismatch repair (MMR) is a system for repairing errors in DNA replication. Cancer cells with MMR deficiency can have immunohistochemical loss of MMR protein expression leading to a hypermutable phenotype that may correlate with anti-PD1 efficacy. Scant data exist about immunohistochemical loss of MMR protein expression in high-grade gliomas (HGG). Materials and Methods: We performed a large multicenter retrospective study to investigate the frequency and the prognostic role of immunohistochemical loss of MMR protein expression in HGG patients; we nevertheless evaluated the association between this status and clinical or molecular characteristics. Immunohistochemical loss of MMR protein expression was recorded as partial or complete loss of at least 1 MMR protein. Results: We analyzed the expression of MMR proteins in tumor tissue of 355 consecutive patients. Partial and complete immunohistochemical loss of MMR proteins was found in 43/355 samples (12.1%) and among these, 15 cases (4.2%) showed a complete loss of at the least one MMR protein. Alteration of MSH2 expression was found in 55.8%, MSH6 in 46.5%, PMS2 in 34.9%, and MLH1 in 30.2%. Alteration of MMR protein expression was statistically more frequent in anaplastic gliomas, in recurrent disease, in patients treated with temozolomide, and in IDH-mut gliomas. Immunohistochemical loss of MMR proteins was not associated with survival, adjusting for clinically relevant confounders. Conclusions: MMR protein expression status did not affect survival in HGG patients. We identified clinical and molecular characteristics correlating with immunohistochemical loss of MMR proteins expression. A large study should be performed to analyze its predictive role of immune checkpoint inhibitor efficacy in these subgroups of patients

    Re-engineering Primary Epithelial Cells from Rhesus Monkey Parotid Glands for Use in Developing an Artificial Salivary Gland

    Full text link
    There is no satisfactory conventional treatment for patients who experience irreversible salivary gland damage after therapeutic radiation for head and neck cancer or because of Sjögren's syndrome. Additionally, if most parenchyma is lost, these patients also are not candidates for evolving gene transfer strategies. To help such patients, several years ago we began to develop an artificial salivary gland. In the present study, we used a non-human primate tissue source, parotid glands from rhesus monkeys, to obtain potential autologous graft cells for development of a prototype device for in situ testing. Herein, we present 3 major findings. First, we show that primary cultures of rhesus parotid gland (RPG) cells are capable of attaining a polarized orientation, with Na+/K+-adenosine triphosphatase, zonula occludens-1, and claudin-1 distributed in specific domains appropriate for epithelial cells. Second, we show that RPG cells exhibit 2 essential epithelial functions required for graft cells in an artificial salivary gland device (i.e., an effective barrier to paracellular water flow and the generation of a moderate transepithelial electrical resistance). Third, we show that RPG cells can express functional water channels, capable of mediating directional fluid movement, after transduction by adenoviral and adeno-associated virus type 2 vectors. Together these results demonstrate that it is feasible to individually prepare RPG cells for eventual use in a prototype artificial salivary gland.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63202/1/ten.2006.12.2939.pd

    Sediment-Water Interactions Affecting Dissolved-Mercury Distributions in Camp Far West Reservoir, California

    Get PDF
    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial summary information (figuratively at the top of the pyramid) and the later details of methods or results (figuratively towards the base of the pyramid) using hyperlinks to supporting figures and tables, and an electronically linked Table of Contents. During two sampling events, two replicate sediment cores (Coring methods; Fig. 2) from each of three reservoir locations (Fig. 1) were used in incubation experiments to provide flux estimates and benthic biological characterizations. Incubation of these cores provided “snapshots” of solute flux across the sediment-water interface in the reservoir, under benthic, environmental conditions representative of the time and place of collection. Ancillary data, including nutrient and ligand fluxes, were gathered to provide a water-quality framework from which to compare the results for mercury

    Peptide-Induced Lipid Flip-Flop in Asymmetric Liposomes Measured by Small Angle Neutron Scattering

    Get PDF
    © 2019 American Chemical Society. Despite the prevalence of lipid transbilayer asymmetry in natural plasma membranes, most biomimetic model membranes studied are symmetric. Recent advances have helped to overcome the difficulties in preparing asymmetric liposomes in vitro, allowing for the examination of a larger set of relevant biophysical questions. Here, we investigate the stability of asymmetric bilayers by measuring lipid flip-flop with time-resolved small-angle neutron scattering (SANS). Asymmetric large unilamellar vesicles with inner bilayer leaflets containing predominantly 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and outer leaflets composed mainly of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) displayed slow spontaneous flip-flop at 37 -C (half-time, t1/2 = 140 h). However, inclusion of peptides, namely, gramicidin, alamethicin, melittin, or pHLIP (i.e., pH-low insertion peptide), accelerated lipid flip-flop. For three of these peptides (i.e., pHLIP, alamethicin, and melittin), each of which was added externally to preformed asymmetric vesicles, we observed a completely scrambled bilayer in less than 2 h. Gramicidin, on the other hand, was preincorporated during the formation of the asymmetric liposomes and showed a time resolvable 8-fold increase in the rate of lipid asymmetry loss. These results point to a membrane surface-related (e.g., adsorption/insertion) event as the primary driver of lipid scrambling in the asymmetric model membranes of this study. We discuss the implications of membrane peptide binding, conformation, and insertion on lipid asymmetry

    Connectome dysfunction in patients at clinical high risk for psychosis and modulation by oxytocin

    Get PDF
    Abnormalities in functional brain networks (functional connectome) are increasingly implicated in people at Clinical High Risk for Psychosis (CHR-P). Intranasal oxytocin, a potential novel treatment for the CHR-P state, modulates network topology in healthy individuals. However, its connectomic effects in people at CHR-P remain unknown. Forty-seven men (30 CHR-P and 17 healthy controls) received acute challenges of both intranasal oxytocin 40 IU and placebo in two parallel randomised, double-blind, placebo-controlled cross-over studies which had similar but not identical designs. Multi-echo resting-state fMRI data was acquired at approximately 1 h post-dosing. Using a graph theoretical approach, the effects of group (CHR-P vs healthy control), treatment (oxytocin vs placebo) and respective interactions were tested on graph metrics describing the topology of the functional connectome. Group effects were observed in 12 regions (all p  < 0.05) most localised to the frontoparietal network. Treatment effects were found in 7 regions (all p  < 0.05) predominantly within the ventral attention network. Our major finding was that many effects of oxytocin on network topology differ across CHR-P and healthy individuals, with significant interaction effects observed in numerous subcortical regions strongly implicated in psychosis onset, such as the thalamus, pallidum and nucleus accumbens, and cortical regions which localised primarily to the default mode network (12 regions, all p  < 0.05). Collectively, our findings provide new insights on aberrant functional brain network organisation associated with psychosis risk and demonstrate, for the first time, that oxytocin modulates network topology in brain regions implicated in the pathophysiology of psychosis in a clinical status (CHR-P vs healthy control) specific manner. [Abstract copyright: © 2024. The Author(s).
    • …
    corecore