450 research outputs found

    Red Giants in the Small Magellanic Cloud. II. Metallicity Gradient and Age-Metallicity Relation

    Full text link
    We present results from the largest CaII triplet line metallicity study of Small Magellanic Cloud (SMC) field red giant stars to date, involving 3037 objects spread across approximately 37.5 sq. deg., centred on this galaxy. We find a median metallicity of [Fe/H]=-0.99+/-0.01, with clear evidence for an abundance gradient of -0.075+/-0.011 dex / deg. over the inner 5 deg. We interpret the abundance gradient to be the result of an increasing fraction of young stars with decreasing galacto-centric radius, coupled with a uniform global age-metallicity relation. We also demonstrate that the age-metallicity relation for an intermediate age population located 10kpc in front of the NE of the Cloud is indistinguishable from that of the main body of the galaxy, supporting a prior conjecture that this is a stellar analogue of the Magellanic Bridge. The metal poor and metal rich quartiles of our RGB star sample (with complementary optical photometry from the Magellanic Clouds Photometric Survey) are predominantly older and younger than approximately 6Gyr, respectively. Consequently, we draw a link between a kinematical signature, tentatively associated by us with a disk-like structure, and the upsurges in stellar genesis imprinted on the star formation history of the central regions of the SMC. We conclude that the increase in the star formation rate around 5-6Gyr ago was most likely triggered by an interaction between the SMC and LMC.Comment: To appear in MNRA

    Near-infrared spectroscopy of the very low mass companion to the hot DA white dwarf PG1234+482

    Full text link
    We present a near-infrared spectrum of the hot (TeffT_{\rm eff} ≈\approx 55,000 K) DA white dwarf PG 1234+482. We confirm that a very low mass companion is responsible for the previously recognised infrared photometric excess. We compare spectra of M and L dwarfs, combined with an appropriate white dwarf model, to the data to constrain the spectral type of the secondary. We find that uncertainties in the 2MASS HKHK photometry of the white dwarf prevent us from distinguishing whether the secondary is stellar or substellar, and assign a spectral type of L0±\pm1 (M9-L1).Therefore, this is the hottest and youngest (≈106\approx 10^6 yr) DA white dwarf with a possible brown dwarf companion.Comment: 5 pages, 2 figures, accepted by MNRA

    Red Giants in the Small Magellanic Cloud. I. Disk and Tidal Stream Kinematics

    Full text link
    We present results from an extensive spectroscopic survey of field stars in the Small Magellanic Cloud (SMC). 3037 sources, predominantly first-ascent red giants, spread across roughly 37.5 sq. deg, are analysed. The line of sight velocity field is dominated by the projection of the orbital motion of the SMC around the LMC/Milky Way. The residuals are inconsistent with both a non-rotating spheroid and a nearly face on disk system. The current sample and previous stellar and HI kinematics can be reconciled by rotating disk models with line of nodes position angle, theta, ~ 120-130 deg., moderate inclination (i ~ 25-70 deg.), and rotation curves rising at 20-40 km/s/kpc. The metal-poor stars exhibit a lower velocity gradient and higher velocity dispersion than the metal-rich stars. If our interpretation of the velocity patterns as bulk rotation is appropriate, then some revision to simulations of the SMC orbit is required since these are generally tuned to the SMC disk line-of-nodes lying in a NE-SW direction. Residuals show strong spatial structure indicative of non-circular motions that increase in importance with increasing distance from the SMC centre. Kinematic substructure in the north-west part of our survey area is associated with the tidal tail or Counter-Bridge predicted by simulations. Lower line-of-sight velocities towards the Wing and the larger velocities just beyond the SW end of the SMC Bar are probably associated with stellar components of the Magellanic Bridge and Counter-Bridge, respectively. Our results reinforce the notion that the intermediate-age stellar population of the SMC is subject to substantial stripping by external forces.Comment: To appear in MNRA

    Optical spectroscopy of candidate Alpha Persei white dwarfs

    Full text link
    As part of an investigation into the high mass end of the initial mass-final mass relation we performed a search for new white dwarf members of the nearby (172.4 pc), young (80-90 Myr) α\alpha Persei open star cluster. The photometric and astrometric search using the UKIRT Infrared Deep Sky Survey and SuperCOSMOS sky surveys discovered 14 new white dwarf candidates. We have obtained medium resolution optical spectra of the brightest 11 candidates using the William Herschel Telescope and confirmed that while 7 are DA white dwarfs, 3 are DB white dwarfs and one is an sdOB star, only three have cooling ages within the cluster age, and from their position on the initial mass-final mass relation, it is likely none are cluster members. This result is disappointing, as recent work on the cluster mass function suggests that there should be at least one white dwarf member, even at this young age. It may be that any white dwarf members of α\alpha Per are hidden within binary systems, as is the case in the Hyades cluster, however the lack of high mass stars within the cluster also makes this seem unlikely. One alternative is that a significant level of detection incompleteness in the legacy optical image survey data at this Galactic latitude has caused some white dwarf members to be overlooked. If this is the case, Gaia will find them.Comment: 8 pages, 7 Figures, 3 Tables. Accepted for publication in MNRA

    Irradiated brown dwarfs

    Full text link
    We have observed the post common envelope binary WD0137-349 in the near infrared JJ, HH and KK bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.Comment: 5 pages, 2 figures. Proceedings from "Brown dwarfs come of age" meeting in Fuerteventura 201

    A high Eddington-ratio, true Seyfert 2 galaxy candidate: implications for broad-line-region models

    Full text link
    A bright, soft X-ray source was detected on 2010 July 14 during an XMM--Newton slew at a position consistent with the galaxy GSN 069 (z=0.018). Previous ROSAT observations failed to detect the source and imply that GSN 069 is now >240 times brighter than it was in 1994 in the soft X-ray band. We report here results from a ~1 yr monitoring with Swift and XMM-Newton, as well as from optical spectroscopy. GSN 069 is an unabsorbed, ultra-soft source in X-rays, with no flux detected above ~1 keV. The soft X-rays exhibit significant variability down to timescales of hundreds of seconds. The UV-to-X-ray spectrum of GSN 069 is consistent with a pure accretion disc model which implies an Eddington ratio of ~0.5 and a black hole mass of ~ 1.2 million solar masses. A new optical spectrum, obtained ~3.5 months after the XMM-Newton slew detection, is consistent with earlier spectra and lacks any broad line component, classifying the source as a Seyfert 2 galaxy. The lack of cold X-ray absorption and the short timescale variability in the soft X-rays rule out a standard Seyfert 2 interpretation of the X-ray data. We discuss our results within the framework of two possible scenarios for the broad-line-region (BLR) in AGN, namely the two-phase model (cold BLR clouds in pressure equilibrium with a hotter medium), and models in which the BLR is part of an outflow, or disc-wind. Finally, we point out that GSN 069 may be a member of a population of super-soft AGN whose SED is completely dominated by accretion disc emission, as it is the case in some black hole X-ray binary transients during their outburst evolution. The disc emission for a typical AGN with larger black hole mass than GSN 069 does not enters the soft X-ray band, so that GSN 069-like objects would likely be missed by current X-ray surveys, or mis-classified as Compton-thick candidates. (ABRIDGED)Comment: Accepted for publication in MNRA
    • …
    corecore