11,355 research outputs found

    Josephson tunneling of dark solitons in a double-well potential

    Get PDF
    We study the dynamics of matter waves in an effectively one-dimensional Bose-Einstein condensate in a double well potential. We consider in particular the case when one of the double wells confines excited states. Similarly to the known ground state oscillations, the states can tunnel between the wells experiencing the physics known for electrons in a Josephson junction, or be self-trapped. As the existence of dark solitons in a harmonic trap are continuations of such non-ground state excitations, one can view the Josephson-like oscillations as tunnelings of dark solitons. Numerical existence and stability analysis based on the full equation is performed, where it is shown that such tunneling can be stable. Through a numerical path following method, unstable tunneling is also obtained in different parameter regions. A coupled-mode system is derived and compared to the numerical observations. Regions of (in)stability of Josephson tunneling are discussed and highlighted. Finally, we outline an experimental scheme designed to explore such dark soliton dynamics in the laboratory.Comment: submitte

    PT-symmetric sine-Gordon breathers

    Get PDF
    In this work, we explore a prototypical example of a genuine continuum breather (i.e., not a standing wave) and the conditions under which it can persist in a PT\mathcal{P T}-symmetric medium. As our model of interest, we will explore the sine-Gordon equation in the presence of a PT\mathcal{P T}- symmetric perturbation. Our main finding is that the breather of the sine-Gordon model will only persist at the interface between gain and loss that PT\mathcal{P T}-symmetry imposes but will not be preserved if centered at the lossy or at the gain side. The latter dynamics is found to be interesting in its own right giving rise to kink-antikink pairs on the gain side and complete decay of the breather on the lossy side. Lastly, the stability of the breathers centered at the interface is studied. As may be anticipated on the basis of their "delicate" existence properties such breathers are found to be destabilized through a Hopf bifurcation in the corresponding Floquet analysis

    Coupled backward- and forward-propagating solitons in a composite right/left-handed transmission line

    Get PDF
    We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right/left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coupled nonlinear Schr{\"o}dinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward propagating vector solitons, of the bright-bright, bright-dark and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in a very good agreement with the results of the simulations, at least up to times of the order of the solitons' lifetimes

    A Unifying Perspective: Solitary Traveling Waves As Discrete Breathers And Energy Criteria For Their Stability

    Get PDF
    In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a co-traveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and based on this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) HH of the model on the wave velocity cc changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H"(c0)H"(c_0) evaluated at the critical velocity c0c_0. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers

    Two-dimensional discrete solitons in rotating lattices

    Get PDF
    We introduce a two-dimensional (2D) discrete nonlinear Schr\"{o}dinger (DNLS) equation with self-attractive cubic nonlinearity in a rotating reference frame. The model applies to a Bose-Einstein condensate stirred by a rotating strong optical lattice, or light propagation in a twisted bundle of nonlinear fibers. Two species of localized states are constructed: off-axis fundamental solitons (FSs), placed at distance RR from the rotation pivot, and on-axis (R=0) vortex solitons (VSs), with vorticities % S=1 and 2. At a fixed value of rotation frequency Ω\Omega , a stability interval for the FSs is found in terms of the lattice coupling constant CC, % 0<C<C_{\mathrm{cr}}(R), with monotonically decreasing Ccr(R)C_{\mathrm{cr}}(R). VSs with S=1 have a stability interval, \tilde{C}_{\mathrm{cr}%}^{(S=1)}(\Omega), which exists for % \Omega below a certain critical value, Ωcr(S=1)\Omega_{\mathrm{cr}}^{(S=1)}. This implies that the VSs with S=1 are \emph{destabilized} in the weak-coupling limit by the rotation. On the contrary, VSs with S=2, that are known to be unstable in the standard DNLS equation, with Ω=0\Omega =0, are \emph{stabilized} by the rotation in region 0<C<Ccr(S=2)0<C<C_{\mathrm{cr}}^{(S=2)}%, with Ccr(S=2)C_{\mathrm{cr}}^{(S=2)} growing as a function of Ω\Omega . Quadrupole and octupole on-axis solitons are considered too, their stability regions being weakly affected by Ω0\Omega \neq 0.Comment: To be published in Physical Review

    Nucleation of breathers via stochastic resonance in nonlinear lattices

    Get PDF
    By applying a staggered driving force in a prototypical discrete model with a quartic nonlinearity, we demonstrate the spontaneous formation and destruction of discrete breathers with a selected frequency due to thermal fluctuations. The phenomenon exhibits the striking features of stochastic resonance (SR): a nonmonotonic behavior as noise is increased and breather generation under subthreshold conditions. The corresponding peak is associated with a matching between the external driving frequency and the breather frequency at the average energy given by ambient temperature.Comment: Added references, figure 5 modified to include new dat

    Critical generalized inverse participation ratio distributions

    Full text link
    The system size dependence of the fluctuations in generalized inverse participation ratios (IPR's) Iα(q)I_{\alpha}(q) at criticality is investigated numerically. The variances of the IPR logarithms are found to be scale-invariant at the macroscopic limit. The finite size corrections to the variances decay algebraically with nontrivial exponents, which depend on the Hamiltonian symmetry and the dimensionality. The large-qq dependence of the asymptotic values of the variances behaves as q2q^2 according to theoretical estimates. These results ensure the self-averaging of the corresponding generalized dimensions.Comment: RevTex4, 5 pages, 4 .eps figures, to be published in Phys. Rev.
    corecore