229 research outputs found

    Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations

    Get PDF
    October mean total column ozone data from four Antarctic stations form the basis for understanding the evolution of the ozone hole since 1960. While these stations show similar emergence of the ozone hole from 1960 to 1980, the records are divergent in the last two decades. The effects of long-term changes in vortex shape and location are considered by gridding the measurements by equivalent latitude. A clear eastward shift of the mean position of the vortex in October with time is revealed, which changes the fraction of ozone measurements taken inside/outside the vortex for stations in the vortex collar region. After including only those measurements made inside the vortex, ozone behavior in the last two decades at the four stations is very similar. This suggests that dynamical influence must be considered when interpreting and intercomparing ozone measurements from Antarctic stations for detecting ozone recovery and ozone-related changes in Antarctic climate

    Landau-Pomeranchuk-Migdal effect in thermal field theory

    Full text link
    In recent studies, the production rate of photons or lepton pairs by a quark gluon plasma has been found to be enhanced due to collinear singularities. This enhancement pattern is very dependent on rather strict collinearity conditions between the photon and the quark momenta. It was estimated by neglecting the collisional width of quasi-particles. In this paper, we study the modifications of this collinear enhancement when we take into account the possibility for the quarks to have a finite mean free path. Assuming a mean free path of order (g2Tln⁡(1/g))−1(g^2T\ln(1/g))^{-1}, we find that only low invariant mass photons are affected. The region where collision effects are important can be interpreted as the region where the Landau-Pomeranchuk-Migdal effect plays a role in thermal photon production by bremsstrahlung. It is found that this effect modifies the spectrum of very energetic photons as well. Based on these results and on a previous work on infrared singularities, we end this paper by a reasonable physical picture for photon production by a quark gluon plasma, that should be useful to set directions for future technical developments.Comment: 28 pages Latex document, 9 postscript figures, typos corrected, semantics cleanup, final version to appear in Phys. Rev.

    UV radiation below an Arctic vortex with severe ozone depletion

    Get PDF
    The erythemally weighted (UV) irradiance below the severely depleted Arctic vortices in spring 1996 and 1997 were substantially elevated. On average the UV increased 36 and 33% relative to the 1979-1981 mean assuming clear skies from day 80-100 in 1996 and 1997, respectively. On clear sky days large regions of the Arctic experienced maximum UV increases exceeding 70 and 50% on single days in 1996 and 1997, respectively. A minor fraction of these increases are not anthropogenic and have a dynamical origin as seen by comparison to 1982, when hardly any ozone depletion is expected

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio

    High temperature color conductivity at next-to-leading log order

    Full text link
    The non-Abelian analog of electrical conductivity at high temperature has previously been known only at leading logarithmic order: that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling. We calculate the first sub-leading correction. This has immediate application to improving, to next-to-leading log order, both effective theories of non-perturbative color dynamics, and calculations of the hot electroweak baryon number violation rate.Comment: 47 pages, 6+2 figure

    Local equilibrium of the quark-gluon plasma

    Full text link
    Within kinetic theory, we look for local equilibrium configurations of the quark-gluon plasma by maximizing the local entropy. We use the well-established transport equations in the Vlasov limit, supplemented with the Waldmann-Snider collision terms. Two different classes of local equilibrium solutions are found. The first one corresponds to the configurations that comply with the so-called collisional invariants. The second one is given by the distribution functions that cancel the collision terms, representing the most probable binary interactions with soft gluon exchange in the t-channel. The two sets of solutions agree with each other if we go beyond these dominant processes and take into account subleading quark-antiquark annihilation/creation and gluon number non-conserving processes. The local equilibrium state appears to be colorful, as the color charges are not locally neutralized. Properties of such an equilibrium state are analyzed. In particular, the related hydrodynamic equations of a colorful fluid are derived. Possible neutralization processes are also briefly discussed.Comment: 20 pages; minor changes, to be published in Phys. Rev.

    Hydrodynamic transport functions from quantum kinetic theory

    Get PDF
    Starting from the quantum kinetic field theory [E. Calzetta and B. L. Hu, Phys. Rev. D37, 2878 (1988)] constructed from the closed-time-path (CTP), two-particle-irreducible (2PI) effective action we show how to compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic regime. For a real scalar field with λΊ4\lambda \Phi ^{4} self-interaction we need to include 4 loop graphs in the equation of motion. This work provides a microscopic field-theoretical basis to the ``effective kinetic theory'' proposed by Jeon and Yaffe [S. Jeon and L. G. Yaffe, Phys. Rev. D53, 5799 (1996)], while our result for the bulk viscosity reproduces their expression derived from linear response theory and the imaginary-time formalism of thermal field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using fundamental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic theory approach, as the success of the latter requires clever rendition of diagrammatic resummations which is neither straightforward nor failsafe. Moreover, the method based on the CTP-2PI effective action illustrated here for a scalar field can be formulated entirely in terms of functional integral quantization, which makes it an appealing method for a first-principles calculation of transport functions of a thermal non-abelian gauge theory, e.g., QCD quark-gluon plasma produced from heavy ion collisions.Comment: 25 pages revtex, 11 postscript figures. Final version accepted for publicatio

    Effective theories for real-time correlations in hot plasmas

    Full text link
    We discuss the sequence of effective theories needed to understand the qualitative, and quantitative, behavior of real-time correlators in ultra-relativistic plasmas. We analyze in detail the case where A is a gauge-invariant conserved current. This case is of interest because it includes a correlation recently measured in lattice simulations of classical, hot, SU(2)-Higgs gauge theory. We find that simple perturbation theory, free kinetic theory, linearized kinetic theory, and hydrodynamics are all needed to understand the correlation for different ranges of time. We emphasize how correlations generically have power-law decays at very large times due to non-linear couplings to long-lived hydrodynamic modes.Comment: 28 pages, Latex, uses revtex, epsf macro packages [Revised version: t -> sqrt{t} in a few typos on p. 10.

    Phase Diagram of Multilayer Magnetic Structures

    Full text link
    Multilayer "ferromagnet-layered antiferromagnet" (Fe/Cr) structures frustrated due to the roughness of layer interfaces are studied by numerical modeling methods. The "thickness-roughness" phase diagrams for the case of thin ferromagnetic film on the surface of bulk antiferromagnet and for two ferromagnetic layers separated by an antiferromagnetic interlayer are obtained and the order parameter distributions for all phases are found. The phase transitions nature in such systems is considered. The range of applicability for the "magnetic proximity model" proposed by Slonczewski is evaluated.Comment: 8 pages, 8 figure

    Lattice Chern-Simons Number Without Ultraviolet Problems

    Get PDF
    We develop a topological method of measuring Chern-Simons number change in the real time evolution of classical lattice SU(2) and SU(2) Higgs theory. We find that the Chern-Simons number diffusion rate per physical 4-volume is very heavily suppressed in the broken phase, and that it decreases with lattice spacing in pure Yang-Mills theory, although not as quickly as predicted by Arnold, Son, and Yaffe.Comment: 26 pages including 6 figures, uses psfig. Corrected for an algebra error in the original draft of hep-lat/9610013; minor rewriting and more analysi
    • 

    corecore