661 research outputs found
The Influence of Galactic Cosmic Rays on Ion-Neutral Hydrocarbon Chemistry in the Upper Atmospheres of Free-Floating Exoplanets
Cosmic rays may be linked to the formation of volatiles necessary for
prebiotic chemistry. We explore the effect of cosmic rays in a
hydrogen-dominated atmosphere, as a proof-of-concept that ion-neutral chemistry
may be important for modelling hydrogen-dominated atmospheres. In order to
accomplish this, we utilize Monte Carlo cosmic ray transport models with
particle energies of eV eV in order to investigate the
cosmic ray enhancement of free electrons in substellar atmospheres. Ion-neutral
chemistry is then applied to a Drift-Phoenix model of a free-floating giant gas
planet. Our results suggest that the activation of ion-neutral chemistry in the
upper atmosphere significantly enhances formation rates for various species,
and we find that CH, CH, NH, CH and possibly
CH are enhanced in the upper atmospheres because of cosmic rays. Our
results suggest a potential connection between cosmic ray chemistry and the
hazes observed in the upper atmospheres of various extrasolar planets.
Chemi-ionization reactions are briefly discussed, as they may enhance the
degree of ionization in the cloud layer.Comment: 22 pages, 4 figures. Accepted to the International Journal of
Astrobiolog
Collision damping in the pi 3He -> d'N reaction near the threshold
We present a simple quantum mechanical model exploiting the optical potential
approach for the description of collision damping in the reaction pi 3He -> d'N
near the threshold, which recently has been measured at TRIUMF. The influence
of the open d'N -> NNN channel is taken into account. It leads to a suppression
factor of about ten in the d' survival probability. Applications of the method
to other reactions are outlined.Comment: RevTeX4, 14 pages, 3 Postscript figures, uses epsfig.sty, to appear
in Phys.Rev.
Search for Narrow NNpi Resonances in Exclusive p p -> p p pi+ pi- Measurements
Narrow structures in the range of a few MeV have been searched for in p p pi+
and p p pi- invariant mass spectra obtained from exclusive measurements of the
p p -> p p pi+ pi- reaction at Tp = 725, 750 and 775 MeV using the PROMICE/WASA
detector at CELSIUS. The selected reaction is particularily well suited for the
search for NN and / or N Delta decoupled dibaryon resonances. Except for a
possible fluctuation at 2087 MeV/c^2 in Mpppi- no narrow structures could be
identified neither in Mpppi+ nor in Mpppi- on the 3 sigma level of statistical
significance, giving an upper limit (95% C.L.) for dibaryon production in this
reaction of sigma < 20 nb for 2020 MeV/c^2 < m(dibaryon) < 2085 MeV/c^2Comment: 3 pages, 4 figure
Resonant behaviour in double charge exchange reaction of \pi^+ mesons on the nuclear photoemulsion
The invariant mass spectra of the and systems produced in the
double charge exchange (DCX) of positively charged pions on photoemulsion are
analysed. A pronounced peak is observed in the invariant mass
spectrum, while the spectrum exhibits a strong Migdal-Watson effect of
the proton-proton final state interaction. These findings are in favor of the
-decoupled pseudoscalar resonance with T=0 called .Comment: 13 pages, 5 figures, revised versio
Possible Dibaryons with Strangeness s=-5
In the framework of , the binding energy of the six quark system with
strangeness s=-5 is systematically investigated under the SU(3) chiral
constituent quark model. The single channel calculation with
spins S=0 and 3 and the coupled and channel
calculation with spins S=1 and 2 are considered, respectively. The results show
following observations: In the spin=0 case, is a bound dibaryon
with the binding energy being . In the S=1 case,
is also a bound dibaryon. Its binding energy is ranged from to . In the S=2 and S=3 cases, no evidence of bound dibaryons
are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are
also given.Comment: 10 pages, late
``Superfast'' Reaction in Turbulent Flow with Potential Disorder
We explore the regime of ``superfast'' reactivity that has been predicted to
occur in turbulent flow in the presence of potential disorder. Computer
simulation studies confirm qualitative features of the previous renormalization
group predictions, which were based on a static model of turbulence. New
renormalization group calculations for a more realistic, dynamic model of
turbulence show that the superfast regime persists. This regime, with
concentration decay exponents greater than that for a well-mixed reaction,
appears to be a general result of the interplay among non-linear reaction
kinetics, turbulent transport, and local trapping by potential disorder.Comment: 14 pages. 4 figures. Uses IOP styles. To appear in J. Phys. A: Math.
Ge
Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis
This study investigates the overall and local response of porous media composed of a perfectly plastic matrix weakened by stress-free voids. Attention is focused on the specific role played by porosity fluctuations inside a representative volume element. To this end, numerical simulations using the Fast Fourier Transform (FFT) are performed on different classes of microstructure corresponding to different spatial distributions of voids. Three types of microstructures are investigated: random microstructures with no void clustering, microstructures with a connected cluster of voids and microstructures with disconnected void clusters. These numerical simulations show that the porosity fluctuations can have a strong effect on the overall yield surface of porous materials. Random microstructures without clusters and microstructures with a connected cluster are the hardest and the softest configurations, respectively, whereas microstructures with disconnected clusters lead to intermediate responses. At a more local scale, the salient feature of the fields is the tendency for the strain fields to concentrate in specific bands. Finally, an image analysis tool is proposed for the statistical characterization of the porosity distribution. It relies on the distribution of the ‘distance function’, the width of which increases when clusters are present. An additional connectedness analysis allows us to discriminate between clustered microstructures
The d' dibaryon in the quark-delocalization, color-screening model
We study the questions of the existence and mass of the proposed dibaryon in the quark-delocalization, color-screening model
(QDCSM). The transformation between physical and symmetry bases has been
extended to the cases beyond the SU(2) orbital symmetry. Using parameters fixed
by baryon properties and scattering, we find a mild attraction in the
channel, but it is not strong enough to form a deeply bound state
as proposed for the state. Nor does the (isospin) I=2 N
configuration have a deeply bound state. These results show that if a narrow
dibaryon state does exist, it must have a more complicated structure.Comment: 12 pp. latex, no figs., 2 tables, additional refs., Report-no was
adde
On the close to threshold meson production in neutron-neutron collisions
A method of measuring the close to threshold meson production in
neutron-neutron collisions is described where the momenta of the colliding
neutrons can be determined with the accuracy obtainable for the proton-proton
reaction. The technique is based on the double quasi-free nn --> nn X^0
reaction, where deuterons are used as a source of neutronsComment: 6 pages, 2 figures, to be published in Phys. Lett.
Possible dibaryons in the quark cluster model
In the framework of RGM, the binding energy of one channel
() and are studied in the
chiral SU(3) quark cluster model. It is shown that the binding energies of the
systems are a few tens of MeV. The behavior of the chiral field is also
investigated by comparing the results with those in the SU(2) and the extended
SU(2) chiral quark models. It is found that the symmetry property of the
system makes the contribution of the relative kinetic energy
operator between two clusters attractive. This is very beneficial for forming
the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very
important role on binding. The S-wave phase shifts and the corresponding
scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure
- …