32 research outputs found

    Insights into the Exfoliation Process of V2O5\ub7 nH2O Nanosheet Formation Using Real-Time 51V NMR

    Get PDF
    Copyright \ua9 2019 American Chemical Society. Nanostructured hydrated vanadium oxides (V2O5\ub7nH2O) are actively being researched for applications in energy storage, catalysis, and gas sensors. Recently, a one-step exfoliation technique for fabricating V2O5\ub7nH2O nanosheets in aqueous media was reported; however, the underlying mechanism of exfoliation has been challenging to study. Herein, we followed the synthesis of V2O5\ub7nH2O nanosheets from the V2O5 and VO2 precursors in real time using solution- and solid-state 51V NMR. Solution-state 51V NMR showed that the aqueous solution contained mostly the decavanadate anion [H2V10O28]4- and the hydrated dioxovanadate cation [VO2\ub74H2O]+, and during the exfoliation process, decavanadate was formed, while the amount of [VO2\ub74H2O]+ remained constant. The conversion of the solid precursor V2O5, which was monitored with solid-state 51V NMR, was initiated when VO2 was in its monoclinic forms. The dried V2O5\ub7nH2O nanosheets were weakly paramagnetic because of a minor content of isolated V4+. Its solid-state 51V signal was less than 20% of V2O5 and arose from diamagnetic V4+ or V5+.This study demonstrates the use of real-time NMR techniques as a powerful analysis tool for the exfoliation of bulk materials into nanosheets. A deeper understanding of this process will pave the way to tailor these important materials. \ua

    Psychophysiological effects of a web-based stress management system: A prospective, randomized controlled intervention study of IT and media workers [ISRCTN54254861]

    Get PDF
    BACKGROUND: The aim of the present study was to assess possible effects on mental and physical well-being and stress-related biological markers of a web-based health promotion tool. METHODS: A randomized, prospectively controlled study was conducted with before and after measurements, involving 303 employees (187 men and 116 women, age 23–64) from four information technology and two media companies. Half of the participants were offered web-based health promotion and stress management training (intervention) lasting for six months. All other participants constituted the reference group. Different biological markers were measured to detect possible physiological changes. RESULTS: After six months the intervention group had improved statistically significantly compared to the reference group on ratings of ability to manage stress, sleep quality, mental energy, concentration ability and social support. The anabolic hormone dehydroepiandosterone sulphate (DHEA-S) decreased significantly in the reference group as compared to unchanged levels in the intervention group. Neuropeptide Y (NPY) increased significantly in the intervention group compared to the reference group. Chromogranin A (CgA) decreased significantly in the intervention group as compared to the reference group. Tumour necrosis factor α (TNFα) decreased significantly in the reference group compared to the intervention group. Logistic regression analysis revealed that group (intervention vs. reference) remained a significant factor in five out of nine predictive models. CONCLUSION: The results indicate that an automatic web-based system might have short-term beneficial physiological and psychological effects and thus might be an opportunity in counteracting some clinically relevant and common stress and health issues of today

    Pride and confidence at work: potential predictors of occupational health in a hospital setting

    Get PDF
    BACKGROUND: This study focuses on determinants of a healthy work environment in two departments in a Swedish university hospital. The study is based on previously conducted longitudinal studies at the hospital (1994–2001), concerning working conditions and health outcomes among health care personnel in conjunction with downsizing processes. Overall, there was a general negative trend in relation to mental health, as well as long-term sick leave during the study period. The two departments chosen for the current study differed from the general hospital trend in that they showed stable health development. The aim of the study was to identify and analyse experiential determinants of healthy working conditions. METHODS: Thematic open-ended interviews were carried out with seventeen managers and key informants, representing different groups of co-workers in the two departments. The interviews were transcribed verbatim and an inductive content analysis was made. RESULTS: In the two studied departments the respondents perceived that it was advantageous to belong to a small department, and to work in cooperation-oriented care. The management approaches described by both managers and co-workers could be interpreted as transformational, due to a strain of visionary, delegating, motivating, confirmative, supportive attitudes and a strongly expressed solution-oriented attitude. The daily work included integrated learning activities. The existing organisational conditions, approaches and attitudes promoted tendencies towards a work climate characterised by trust, team spirit and professionalism. In the description of the themes organisational conditions, approaches and climate, two core determinants, work-pride and confidence, for healthy working conditions were interpreted. Our core determinants augment the well-established concepts: manageability, comprehensiveness and meaningfulness. These favourable conditions seem to function as a buffer against the general negative effects of downsizing observed elsewhere in the hospital, and in the literature. CONCLUSION: Research illuminating health-promoting aspects is rather unusual. This study could be seen as explorative. The themes and core dimensions we found could be used as a basis for further intervention studies in similar health-care settings. The result could also be used in future health promotion studies in larger populations. One of the first steps in such a strategy is to formulate relevant questions, and we consider that this study contributes to this

    Nano-structural analysis of water distribution in hydrated multi-component gels using thermal and NMR relaxometry

    No full text
    Highly complex, multicomponent gels and water-containing soft materials have varied applications in biomedical, pharmaceutical, and food sciences, but the characterization of these nanostructured materials is extremely challenging. The aim of this study was to use stearoyl macrogol-32 glycerides (Gelucire 50/13) gels containing seven different species of glycerides, PEG, and PEG-esters, as model, complex, multicomponent gels, to investigate the effect of water content on the micro- and nanoarchitecture of the gel interior. Thermal analysis and NMR relaxometry were used to probe the thermal and diffusional behavior of water molecules within the gel network. For the highly concentrated gels (low water content), the water activity was significantly lowered due to entrapment in the dense gel network. For the gels with intermediate water content, multiple populations of water molecules with different thermal responses and diffusion behavior were detected, indicating the presence of water in different microenvironments. This correlated with the network architecture of the freeze-dried gels observed using SEM. For the gels with high water content, increased quantities of water with similar diffusion characteristics as free water could be detected, indicating the presence of large water pockets in these gels. The results of this study provide new insights into structure of Gelucire gels, which have not been reported before because of the complexity of the material. They also demonstrate that the combination of thermal analysis and NMR relaxometry offers insights into the structure of soft materials not available by the use of each technique alone. However, we also note that in some instances the results of these measurements are overinterpreted and we suggest limitations of the methods that must be considered when using them

    Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    Get PDF
    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR
    corecore