9,832 research outputs found

    Evaluation of AIS Data for Agronomic and Rangeland Vegetation: Preliminary Results for August 1984 Flight over Nebraska Sandhills Agricultural Laboratory

    Get PDF
    Since 1978 scientists from the Center for Agricultural Meteorology and Climatology at the University of Nebraska have been conducting research at the Sandhills Agricultural Laboratory on the effects of water stress on crop growth, development and yield using remote sensing techniques. We have been working to develop techniques, both remote and ground-based, to monitor water stress, phenological development, leaf area, phytomass production and grain yields of corn, soybeans and sorghum. Because of the sandy soils and relatively low rainfall at the site it is an excellent location to study water stress without the necessity of installing expensive rainout shelters. The primary objectives of research with the airborne imaging spectrometer (AIS) data collected during an August 1984 flight over the Sandhills Agricultural Laboratory are to evaluate the potential of using AIS to: (1) discriminate crop type; (2) to detect subtle architectural differences that exist among different cultivars or hybrids of agronomic crops; (3) to detect and quantify, if possible, the level of water stress imposed on the crops; and (4) to evaluate leaf area and biomass differences for different crops

    Study of the technique of stellar occultation

    Get PDF
    The results are reported of a study of the stellar occultation technique for measuring the composition of the atmosphere. The intensity of starlight was monitored during the occultation using the Wisconsin stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-A2). A schematic diagram of an occultation is shown where the change in intensity at a given wavelength is illustrated. The vertical projection of the attenuation region is typically 60 km deep for molecular oxygen and 30 km deep for ozone. Intensity profiles obtained during various occultations were analyzed by first determining the tangential columm density of the absorbing gases, and then Abel inverting the column densities to obtain the number density profile. Errors are associated with each step in the inversion scheme and have been considered as an integral part of this study

    Integrated technology wing design study

    Get PDF
    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs

    Observations of the 5‐day wave in the mesosphere and lower thermosphere

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94851/1/grl7954.pd

    Intercalibration of HRDI and WINDII wind measurements

    Get PDF

    Integrated digital/electric aircraft concepts study

    Get PDF
    The integrated digital/electrical aircraft (IDEA) is an aircraft concept which employs all electric secondary power systems and advanced digital flight control systems. After trade analysis, preferred systems were applied to the baseline configuration. An additional configuration, the alternate IDEA, was also considered. For this concept the design ground rules were relaxed in order to quantify additional synergistic benefits. It was proposed that an IDEA configuration and technical risks associated with the IDEA systems concepts be defined and the research and development required activities to reduce these risks be identified. The selected subsystems include: power generation, power distribution, actuators, environmental control system and flight controls systems. When the aircraft was resized, block fuel was predicted to decrease by 11.3 percent, with 7.9 percent decrease in direct operating cost. The alternate IDEA shows a further 3.4 percent reduction in block fuel and 3.1 percent reduction in direct operating cost

    The Meridional Thermospheric Neutral Wind Measured by Radar and Optical Techniques in the Auroral Region

    Get PDF
    Radar observations of ion velocities in the magnetic zenith over Chatanika, Alaska, were used to determine the geomagnetic meridional component of the thermospheric neutral wind. Corrections for molecular diffusion and molecular ion contamination of the pure O+ composition assumed for the ionosphere were included in the analysis. Comparison of the averaged diurnal variation of the meridional wind showed good agreement between the two measurement techniques. Good agreement was also found for several cases of simultaneous observations. The evidence suggested that differences were caused by gravity waves. The 7 years of radar meridional wind results were examined with respect to magnetic activity, solar cycle phase, and season. During the day, the meridional component is poleward with a maximum of about 65 m/s between 1400 and 1600 local time. During the night, the wind is equatorward with a maximum of about 175 m/s between 0200 and 0500 local time. This maximum occurs after local magnetic midnight, which is about 0130 local time. When the neutral wind is averaged for 24 hours, there is a large net equatorward flow. During periods of increased magnetic activity, the nighttime wind between 2300 and 0600 local time becomes stronger toward the equator. The average increase between 0200 and 0600 local time is about 100 m/s; however, on individual days it can be as large as 400 m/s. These data pertain mostly to equinox, but the few summer and winter observations in the data set differ in the manner predicted by theory. Comparison of these results with theoretical models shows good agreement at most times, but suggests possible heating poleward of Chatanika during the morning hours. Observed exospheric temperature increases support this hypothesis

    Neutral motions in the polar thermosphere for northward interplanetary magnetic field

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94648/1/grl2865.pd
    corecore