72,198 research outputs found
Simulation and assimilation of satellite altimeter data at the oceanic mesoscale
An improved "objective analysis' technique is used along with an altimeter signal statistical model, an altimeter noise statistical model, an orbital model, and synoptic surface current maps in the POLYMODE-SDE area, to evaluate the performance of various observational strategies in catching the mesoscale variability at mid-latitudes. In particular, simulated repetitive nominal orbits of ERS-1, TOPEX, and SPOT/POSEIDON are examined. Results show the critical importance of existence of a subcycle, scanning in either direction. Moreover, long repeat cycles ( 20 days) and short cross-track distances ( 300 km) seem preferable, since they match mesoscale statistics. Another goal of the study is to prepare and discuss sea-surface height (SSH) assimilation in quasigeostrophic models. Restored SSH maps are shown to meet that purpose, if an efficient extrapolation method or deep in-situ data (floats) are used on the vertical to start and update the model
Pioneer Venus spacecraft charging model
Five environmental models were constructed to represent the solar wind and the upper, middle, and lower ionosphere of Venus. The spacecraft structure was modeled with over 140 passive electrical elements representing structural elements of the spacecraft. Electron, ion, secondary electron, and photocurrents to the spacecraft from the plasma were calculated, ignoring sheath effects. In all but one case, potentials of interest were less than 1 volt. Potential differences between widely separated points on the equipment shelf were less than 1 mV. The one area of concern is the solar panel potential when the orbiter is passing through the bowshock region
Intrinsic Variability and Field Statistics for the Vela Pulsar: 3. Two-Component Fits and Detailed Assessment of Stochastic Growth Theory
The variability of the Vela pulsar (PSR B0833-45) corresponds to well-defined
field statistics that vary with pulsar phase, ranging from Gaussian intensity
statistics off-pulse to approximately power-law statistics in a transition
region and then lognormal statistics on-pulse, excluding giant micropulses.
These data are analyzed here in terms of two superposed wave populations, using
a new calculation for the amplitude statistics of two vectorially-combined
transverse fields. Detailed analyses show that the approximately power-law and
lognormal distributions observed are fitted well at essentially all on-pulse
phases by Gaussian-lognormal and double-lognormal combinations, respectively.
These good fits, plus the smooth but significant variations in fit parameters
across the source, provide strong evidence that the approximately power-law
statistics observed in the transition region are not intrinsic. Instead, the
data are consistent with normal pulsar emission having lognormal statistics at
all phases. This is consistent with generation in an inhomogeneous source
obeying stochastic growth theory (SGT) and with the emission mechanism being
purely linear (either direct or indirect). A nonlinear mechanism is viable only
if it produces lognormal statistics when suitably ensemble-averaged. Variations
in the SGT fit parameters with phase imply that the radiation is relatively
more variable near the pulse edges than near the center, as found in earlier
work. In contrast, Vela's giant micropulses come from a very restricted phase
range and have power-law statistics with indices () not
inconsistent with nonlinear wave collapse. These results imply that normal
pulses have a different source and generation mechanism than giant micropulses,
as suggested previously on other grounds.Comment: 10 pages and 14 figures. Accepted by Monthly Notices of the Royal
Astronomical Society in April 200
Oblique-incidence secondary emission from charged dielectrics
Secondary electron emission coefficients were measured on FEP-Teflon for normal and oblique incidence in the presence of a normal electric field. Such measurements require knowledge of the electrostatic environment surrounding the specimen, and they require calculation of particle trajectories such that particle impact parameters can be known. A simulation using a conformal mapping, a Green's integral, and a trajectory generator provides the necessary mathematical support for the measurements, which were made with normal fields of 1.5 and 2.7 kV/mm. When incidence is normal and energy exceeds the critical energy, the coefficient is given by (V sub 0/V) to the .58 power, and for oblique incidence this expression may be divided by the cosine of the angle. The parameter V sub 0 is a function of normal field
FET charge sensor and voltage probe
A MOSFET structure having a biased gate covered with an insulator is described. The insulator is of such a thickness as to render the structure capable of giving a measure of accumulated charge. The structure is also capable of being used in a stacked structure as a particle spectrometer
Polynomial Cointegration among Stationary Processes with Long Memory
n this paper we consider polynomial cointegrating relationships among
stationary processes with long range dependence. We express the regression
functions in terms of Hermite polynomials and we consider a form of spectral
regression around frequency zero. For these estimates, we establish consistency
by means of a more general result on continuously averaged estimates of the
spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200
A visible difference: an evaluation of the second phase of the Police Community Support Officers in West Yorkshire
Shear-Free Gravitational Waves in an Anisotropic Universe
We study gravitational waves propagating through an anisotropic Bianchi I
dust-filled universe (containing the Einstein-de-Sitter universe as a special
case). The waves are modeled as small perturbations of this background
cosmological model and we choose a family of null hypersurfaces in this
space-time to act as the histories of the wavefronts of the radiation. We find
that the perturbations we generate can describe pure gravitational radiation if
and only if the null hypersurfaces are shear-free. We calculate the
gauge-invariant small perturbations explicitly in this case. How these differ
from the corresponding perturbations when the background space-time is
isotropic is clearly exhibited.Comment: 32 pages, accepted for publication in Physical Review
- …
