5,874 research outputs found

    Eigenvalue hypothesis for multi-strand braids

    Full text link
    Computing polynomial form of the colored HOMFLY-PT for non-arborescent knots obtained from three or more strand braids is still an open problem. One of the efficient methods suggested for the three-strand braids relies on the eigenvalue hypothesis which uses the Yang-Baxter equation to express the answer through the eigenvalues of the R{\cal R}-matrix. In this paper, we generalize the hypothesis to higher number of strands in the braid where commuting relations of non-neighbouring R\mathcal{R} matrices are also incorporated. By solving these equations, we determine the explicit form for R\mathcal{R}-matrices and the inclusive Racah matrices in terms of braiding eigenvalues (for matrices of size up to 6 by 6). For comparison, we briefly discuss the highest weight method for four-strand braids carrying fundamental and symmetric rank two SUq(N)SU_q(N) representation. Specifically, we present all the inclusive Racah matrices for representation [2][2] and compare with the matrices obtained from eigenvalue hypothesis.Comment: 23 page

    New and Old Results in Resultant Theory

    Full text link
    Resultants are getting increasingly important in modern theoretical physics: they appear whenever one deals with non-linear (polynomial) equations, with non-quadratic forms or with non-Gaussian integrals. Being a subject of more than three-hundred-year research, resultants are of course rather well studied: a lot of explicit formulas, beautiful properties and intriguing relationships are known in this field. We present a brief overview of these results, including both recent and already classical. Emphasis is made on explicit formulas for resultants, which could be practically useful in a future physics research.Comment: 50 pages, 15 figure

    Dualities in persistent (co)homology

    Full text link
    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm.Comment: 16 pages, 3 figures, submitted to the Inverse Problems special issue on Topological Data Analysi

    Explicit computation of Drinfeld associator in the case of the fundamental representation of gl(N)

    Full text link
    We solve the regularized Knizhnik-Zamolodchikov equation and find an explicit expression for the Drinfeld associator. We restrict to the case of the fundamental representation of gl(N)gl(N). Several tests of the results are presented. It can be explicitly seen that components of this solution for the associator coincide with certain components of WZW conformal block for primary fields. We introduce the symmetrized version of the Drinfeld associator by dropping the odd terms. The symmetrized associator gives the same knot invariants, but has a simpler structure and is fully characterized by one symmetric function which we call the Drinfeld prepotential.Comment: 14 pages, 2 figures; several flaws indicated by referees correcte

    New matrix model solutions to the Kac-Schwarz problem

    Get PDF
    We examine the Kac-Schwarz problem of specification of point in Grassmannian in the restricted case of gap-one first-order differential Kac-Schwarz operators. While the pair of constraints satisfying [K1,W]=1[{\cal K}_1,W] = 1 always leads to Kontsevich type models, in the case of [K1,W]=W[{\cal K}_1,W] = W the corresponding KP τ\tau-functions are represented as more sophisticated matrix integrals.Comment: 19 pages, latex, no figures, contribution to the proceedings of the 29th International Symposium Ahrenshoop on the Theory of Elementary Particles, Buckow, German
    corecore