9,949 research outputs found

    Range and throughput enhancement of wireless local area networks using smart sectorised antennas

    Get PDF

    A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards

    Get PDF

    Mn induced modifications of Ga 3d photoemission from (Ga, Mn)As: evidence for long range effects

    Full text link
    Using synchrotron based photoemission, we have investigated the Mn-induced changes in Ga 3d core level spectra from as-grown Ga1xMnxAs{\rm Ga}_{1-x}{\rm Mn}_{x}{\rm As}. Although Mn is located in Ga substitutional sites, and does therefore not have any Ga nearest neighbours, the impact of Mn on the Ga core level spectra is pronounced even at Mn concentrations in the range of 0.5%. The analysis shows that each Mn atom affects a volume corresponding to a sphere with around 1.4 nm diameter.Comment: Submitted to Physical Review B, Brief Repor

    Interaction-free measurement and forward scattering

    Get PDF
    Interaction-free measurement is shown to arise from the forward-scattered wave accompanying absorption: a "quantum silhouette" of the absorber. Accordingly, the process is not free of interaction. For a perfect absorber the forward-scattered wave is locked both in amplitude and in phase. For an imperfect one it has a nontrivial phase of dynamical origin (``colored silhouette"), measurable by interferometry. Other examples of quantum silhouettes, all controlled by unitarity, are briefly discussed.Comment: 4 pages in RevTex + 1 figure in eps; submitted to Phys. Rev. A since 09Jan98; now update

    Evidence for an antiferromagnetic component in the magnetic structure of ZrZn2

    Full text link
    Zero-field muon spin rotation experiments provide evidence for an antiferromagnetic component in the magnetic structure of the intermetallics ZrZn2.Comment: 5 pages, 2 figure

    Quantum coherence and interaction-free measurements

    Get PDF
    We investigate the extent to which ``interaction-free'' measurements perturb the state of quantum systems. We show that the absence of energy exchange during the measurement is not a sufficient criterion to preserve that state, as the quantum system is subject to measurement dependent decoherence. While it is possible in general to design interaction-free measurement schemes that do preserve that state, the requirement of quantum coherence preservation rapidly leads to a very low efficiency. Our results, which have a simple interpretation in terms of ``which-way'' arguments, open up the way to novel quantum non-demolition techniques.Comment: 4 pages incl. 2 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A (Rapid Comm.

    Can we always get the entanglement entropy from the Kadanoff-Baym equations? The case of the T-matrix approximation

    Full text link
    We study the time-dependent transmission of entanglement entropy through an out-of-equilibrium model interacting device in a quantum transport set-up. The dynamics is performed via the Kadanoff-Baym equations within many-body perturbation theory. The double occupancy <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >, needed to determine the entanglement entropy, is obtained from the equations of motion of the single-particle Green's function. A remarkable result of our calculations is that <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} > can become negative, thus not permitting to evaluate the entanglement entropy. This is a shortcoming of approximate, and yet conserving, many-body self-energies. Among the tested perturbation schemes, the TT-matrix approximation stands out for two reasons: it compares well to exact results in the low density regime and it always provides a non-negative <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >. For the second part of this statement, we give an analytical proof. Finally, the transmission of entanglement across the device is diminished by interactions but can be amplified by a current flowing through the system.Comment: 6 pages, 6 figure
    corecore