2,631 research outputs found
opendf - an implementation of the dual fermion method for strongly correlated systems
The dual fermion method is a multiscale approach for solving lattice problems
of interacting strongly correlated systems. In this paper, we present the
\texttt{opendf} code, an open-source implementation of the dual fermion method
applicable to fermionic single-orbital lattice models in dimensions
and . The method is built on a dynamical mean field starting point, which
neglects all local correlations, and perturbatively adds spatial correlations.
Our code is distributed as an open-source package under the GNU public license
version 2.Comment: 7 pages, 6 figures, 28th Annual CSP Workshop proceeding
Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures
We report observation of a strong wakefield induced energy modulation in an
energy-chirped electron bunch passing through a dielectric-lined waveguide.
This modulation can be effectively converted into a spatial modulation forming
micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of
driving coherent THz radiation. The experimental results agree well with
theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR
Electron energy spectrum of the spin-liquid state in a frustrated Hubbard model
Non-local correlation effects in the half-filled Hubbard model on an
isotropic triangular lattice are studied within a spin polarized extension of
the dual fermion approach. A competition between the antiferromagnetic
non-collinear and the spin liquid states is strongly enhanced by an
incorporation of a k-dependent self-energy beyond the local dynamical
mean-field theory. The dual fermion correc- tions drastically decrease the
energy of a spin liquid state while leaving the non-collinear magnetic states
almost non-affected. This makes the spin liquid to become a preferable state in
a certain interval of interaction strength of an order of the magnitude of a
bandwidth. The spectral function of the spin-liquid Mott insulator is
determined by a formation of local singlets which results in the energy gap of
about twice larger than that of the 120 degrees antiferromagnetic Neel state.Comment: 6 pages, 4 figure
Effect of Sr substitution on superconductivity in Hg2(Ba1-ySry)2YCu2O8-d (part2): bond valence sum approach of the hole distribution
The effects of Sr substitution on superconductivity, and more particulary the
changes induced in the hole doping mechanism, were investigated in
Hg2(Ba1-ySry)2YCu2O8-d by a "bond valence sum" analysis with Sr content from y
= 0.0 to y = 1.0. A comparison with CuBa2YCu2O7-d and Cu2Ba2YCu2O8 systems
suggests a possible explanation of the Tc enhancement from 0 K for y = 0.0 to
42 K for y = 1.0. The charge distribution among atoms of the unit cell was
determined from the refined structure, for y = 0.0 to 1.0. It shows a charge
transfer to the superconducting CuO2 plane via two doping channels pi(1) and
pi(2), i.e. through O2(apical)-Cu and Ba/Sr-O1 bonds respectively.Comment: 13 pages, 5 figures, accepted for publication in Journal of Physics:
Condensed Matte
Radiative corrections to neutral pion-pair production
We calculate the one-photon loop radiative corrections to the neutral
pion-pair photoproduction process . At leading
order this reaction is governed by the chiral pion-pion interaction. Since the
chiral contact-vertex depends only on the final-state
invariant-mass it factors out of all photon-loop diagrams. We give analytical
expressions for the multiplicative correction factor
arising from eight classes of contributing one-photon loop diagrams. An
electromagnetic counterterm has to be included in order to cancel the
ultraviolet divergences generated by the photon-loops. Infrared finiteness of
the virtual radiative corrections is achieved (in the standard way) by
including soft photon radiation below an energy cut-off . The
radiative corrections to the total cross section vary between and
for center-of-mass energies from threshold up to . The finite part of
the electromagnetic counterterm gives an additional constant contribution of
about , however with a large uncertainty.Comment: 10 pages, 6 figures, submitted to Eur. Phys. J.
A model for A=3 antinuclei production in proton-nucleus collisions
A simple coalescence model based on the same diagrammatic approach of
antimatter production in hadronic collisions as used previously for
antideuterons is used here for the hadroproduction of mass 3 antinuclei. It is
shown that the model is able to reproduce the existing experimental data on
Tbar and 3hebar production without any additional parameter.Comment: 7 figures. submitted to Eur. Phys. J.
Radiotomographic system construction on the basis of multi-elemental reflective array
The authors propose a solution of the problem of radiovision using the reflective array, each element of which can change the reflection coefficient under the action of external control voltage. The focusing abilities of flat reflection array of monochromatic radiation were studied to solve the problem of radiovision. The array element based on waveguide with a controlled reflection coefficient was developed. The phase shift switching is 180°
The Experimental Search for Pentaquark
The existence of an anti-decuplet of pentaquark particles has been predicted
some year ago within the chiral soliton model. In the last year, several
experimental groups have reported evidence for a S=+1 baryon resonance, with
mass ranging from 1.52 and 1.55 GeV and width less than 25 MeV, by looking at
the invariant mass of the system. This resonance, has been identified
with the lowest mass of the anti-decuplet, the . At the same time,
there are a number of experiment, mostly at high energies, that report null
results. An overview of the experimental results so far obtained will be given
here together with a review of the second generation experiments currently
ongoing and planned at Jefferson Lab Hall B.Comment: 10 pages, 9 figures, 3 tables Proceedings of the INCP2004 Conference
- Goteborg (Sweden) June 27 - July 2, 200
Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods
- …