137,155 research outputs found
Electronic spectrum of crystalline antimony
Electronic spectrum of crystalline antimon
Documentation of a ground hydrology parameterization for use in the GISS atmospheric general circulation model
The moisture transport processes related to the earth's surface relevant to the ground circulation model GCM are presented. The GHM parametrizations considered are: (1) ground wetness and soil parameters; (2) precipitation; (3) evapotranspiration; (4) surface storage of snow and ice; and (5) runout. The computational aspects of the GHM using computer programs and flow charts are described
Low Redshift QSO Lyman alpha Absorption Line Systems Associated with Galaxies
In this paper we present Monte-Carlo simulations of Lyman alpha absorption
systems which originate in galactic haloes, galaxy discs and dark matter (DM)
satellites around big central haloes. It is found that for strong Lyman alpha
absorption lines galactic haloes and satellites can explain ~20% and 40% of the
line number density of QSO absorption line key project respectively. If big
galaxies indeed possess such large numbers of DM satellites and they possess
gas, these satellites may play an important role for strong Lyman alpha lines.
However the predicted number density of Lyman-limit systems by satellites is
\~0.1 (per unit redshift), which is four times smaller than that by halo
clouds. Including galactic haloes, satellites and HI discs of spirals, the
predicted number density of strong lines can be as much as 60% of the HST
result. The models can also predict all of the observed Lyman-limit systems.
The average covering factor within 250 kpc/h is estimated to be ~0.36. And the
effective absorption radius of a galaxy is estimated to be ~150 kpc/h. The
models predict W_r propto rho^{-0.5} L_B^{0.15} (1+z)^{-0.5}. We study the
selection effects of selection criteria similar to the imaging and
spectroscopic surveys. We simulate mock observations through known QSO
lines-of-sight and find that selection effects can statistically tighten the
dependence of line width on projected distance. (abridged)Comment: 23 pages, 9 postscript figures; references updated, minor change in
section
Formation time distribution of dark matter haloes: theories versus N-body simulations
This paper uses numerical simulations to test the formation time distribution
of dark matter haloes predicted by the analytic excursion set approaches. The
formation time distribution is closely linked to the conditional mass function
and this test is therefore an indirect probe of this distribution. The
excursion set models tested are the extended Press-Schechter (EPS) model, the
ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB)
model. Three sets of simulations (6 realizations) have been used to investigate
the halo formation time distribution for halo masses ranging from dwarf-galaxy
like haloes (, where is the characteristic non-linear mass
scale) to massive haloes of . None of the models can match the
simulation results at both high and low redshift. In particular, dark matter
haloes formed generally earlier in our simulations than predicted by the EPS
model. This discrepancy might help explain why semi-analytic models of galaxy
formation, based on EPS merger trees, under-predict the number of high redshift
galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Tunneling and delocalization in hydrogen bonded systems: a study in position and momentum space
Novel experimental and computational studies have uncovered the proton
momentum distribution in hydrogen bonded systems. In this work, we utilize
recently developed open path integral Car-Parrinello molecular dynamics
methodology in order to study the momentum distribution in phases of high
pressure ice. Some of these phases exhibit symmetric hydrogen bonds and quantum
tunneling. We find that the symmetric hydrogen bonded phase possesses a
narrowed momentum distribution as compared with a covalently bonded phase, in
agreement with recent experimental findings. The signatures of tunneling that
we observe are a narrowed distribution in the low-to-intermediate momentum
region, with a tail that extends to match the result of the covalently bonded
state. The transition to tunneling behavior shows similarity to features
observed in recent experiments performed on confined water. We corroborate our
ice simulations with a study of a particle in a model one-dimensional double
well potential that mimics some of the effects observed in bulk simulations.
The temperature dependence of the momentum distribution in the one-dimensional
model allows for the differentiation between ground state and mixed state
tunneling effects.Comment: 14 pages, 13 figure
Direct Numerical Simulation of a separated channel flow with a smooth profile
A direct numerical simulation (DNS) of a channel flow with one curved surface
was performed at moderate Reynolds number (Re_tau = 395 at the inlet). The
adverse pressure gradient was obtained by a wall curvature through a
mathematical mapping from physical coordinates to Cartesian ones. The code,
using spectral spanwise and normal discretization, combines the advantage of a
good accuracy with a fast integration procedure compared to standard numerical
procedures for complex geometries. The turbulent flow slightly separates on the
profile at the lower curved wall and is at the onset of separation at the
opposite flat wall. The thin separation bubble is characterized with a reversal
flow fraction. Intense vortices are generated near the separation line on the
lower wall but also at the upper wall. Turbulent normal stresses and kinetic
energy budget are investigated along the channel.Comment: 23 pages, submitted to Journal of Turbulenc
- …