423 research outputs found

    The Chemical Evolution of Helium in Globular Clusters: Implications for the Self-Pollution Scenario

    Get PDF
    We investigate the suggestion that there are stellar populations in some globular clusters with enhanced helium (Y from 0.28 to 0.40) compared to the primordial value. We assume that a previous generation of massive Asymptotic Giant Branch (AGB) stars have polluted the cluster. Two independent sets of AGB yields are used to follow the evolution of helium and CNO using a Salpeter initial mass function (IMF) and two top-heavy IMFs. In no case are we able to produce the postulated large Y ~ 0.35 without violating the observational constraint that the CNO content is nearly constant.Comment: accepted for publication in Ap

    Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production

    Get PDF
    Our main goals are to get a deeper insight into the evolution and final fates of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to investigate their C, N, and O yields. Using the Monash University Stellar Evolution code we computed and analysed the evolution of stars of metallicity Z = 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our model stars experience a strong C, N, and O envelope enrichment either due to the second dredge-up, the dredge-out phenomenon, or the third dredge-up early during the TP-(S)AGB phase. Their late evolution is therefore similar to that of higher metallicity objects. When using a standard prescription for the mass loss rates during the TP-(S)AGB phase, the computed stars lose most of their envelopes before their cores reach the Chandrasekhar mass, so our standard models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we find that the reduction of only one order of magnitude in the mass-loss rates, which are particularly uncertain at this metallicity, would prevent the complete ejection of the envelope, allowing the stars to either explode as an SNI1/2 or become an electron-capture SN. Our calculations stop due to an instability near the base of the convective envelope that hampers further convergence and leaves remnant envelope masses between 0.25 M_sun for our 4 M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N, and O yields derived from our full calculations and computed under two different assumptions, namely, that the instability causes a practically instant loss of the remnant envelope or that the stars recover and proceed with further thermal pulses. Our results have implications for the early chemical evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&

    MONTAGE: AGB nucleosynthesis with full s-process calculations

    Full text link
    We present MONTAGE, a post-processing nucleosynthesis code that combines a traditional network for isotopes lighter than calcium with a rapid algorithm for calculating the s-process nucleosynthesis of the heavier isotopes. The separation of those parts of the network where only neutron-capture and beta-decay reactions are significant provides a substantial advantage in computational efficiency. We present the yields for a complete set of s-process isotopes for a 3 Mo, Z = 0.02 stellar model, as a demonstration of the utility of the approach. Future work will include a large grid of models suitable for use in calculations of Galactic chemical evolution.Comment: 9 pages, 4 figures. Accepted by PAS

    Magnetohydrodynamics of Cloud Collisions in a Multi-phase Interstellar Medium

    Get PDF
    We extend previous studies of the physics of interstellar cloud collisions by beginning investigation of the role of magnetic fields through 2D magnetohydrodynamic (MHD) numerical simulations. We study head-on collisions between equal mass, mildly supersonic diffuse clouds. We include a moderate magnetic field and two limiting field geometries, with the field lines parallel (aligned) and perpendicular (transverse) to the colliding cloud motion. We explore both adiabatic and radiative cases, as well as symmetric and asymmetric ones. We also compute collisions between clouds evolved through prior motion in the intercloud medium and compare with unevolved cases. We find that: In the (i) aligned case, adiabatic collisions, like their HD counterparts, are very disruptive, independent of the cloud symmetry. However, when radiative processes are taken into account, partial coalescence takes place even in the asymmetric case, unlike the HD calculations. In the (ii) transverse case, collisions between initially adjacent unevolved clouds are almost unaffected by magnetic fields. However, the interaction with the magnetized intercloud gas during the pre-collision evolution produces a region of very high magnetic energy in front of the cloud. In collisions between evolved clouds with transverse field geometry, this region acts like a ``bumper'', preventing direct contact between the clouds, and eventually reverses their motion. The ``elasticity'', defined as the ratio of the final to the initial kinetic energy of each cloud, is about 0.5-0.6 in the cases we considered. This behavior is found both in adiabatic and radiative cases.Comment: 40 pages in AAS LaTeX v4.0, 13 figures (in degraded jpeg format). Full resolution images as well as mpeg animations are available at http://www.msi.umn.edu:80/Projects/twj/mhd-cc/ . Accepted for publication in The Astrophysical Journa

    AGB subpopulations in the nearby globular cluster NGC 6397

    Get PDF
    It has been well established that Galactic Globular clusters (GCs) harbour more than one stellar population, distinguishable by the anti-correlations of light element abundances (C-N, Na-O, and Mg-Al). These studies have been extended recently to the asymptotic giant branch (AGB). Here we investigate the AGB of NGC 6397 for the first time. We have performed an abundance analysis of high-resolution spectra of 47 RGB and 8 AGB stars, deriving Fe, Na, O, Mg and Al abundances. We find that NGC 6397 shows no evidence of a deficit in Na-rich AGB stars, as reported for some other GCs - the subpopulation ratios of the AGB and RGB in NGC 6397 are identical, within uncertainties. This agrees with expectations from stellar theory. This GC acts as a control for our earlier work on the AGB of M 4 (with contrasting results), since the same tools and methods were used.Comment: 10 pages, 7 figures, 8 tables (2 online-only). Accepted for publication in MNRA

    Nucleosynthetic yields of Z=10−510^{-5} intermediate-mass stars

    Get PDF
    Abridged: Observed abundances of extremely metal-poor (EMP) stars in the Halo hold clues for the understanding of the ancient universe. Interpreting these clues requires theoretical stellar models at the low-Z regime. We provide the nucleosynthetic yields of intermediate-mass Z=10−510^{-5} stars between 3 and 7.5 MsunM_{sun}, and quantify the effects of the uncertain wind rates. We expect these yields can be eventually used to assess the contribution to the chemical inventory of the early universe, and to help interpret abundances of selected C-enhanced EMP stars. By comparing our models and other existing in the literature, we explore evolutionary and nucleosynthetic trends with wind prescriptions and with initial metallicity. We compare our results to observations of CEMP-s stars belonging to the Halo. The yields of intermediate-mass EMP stars reflect the effects of very deep second dredge-up (for the most massive models), superimposed with the combined signatures of hot-bottom burning and third dredge-up. We confirm the reported trend that models with initial metallicity Zini_{ini} <= 0.001 give positive yields of 12C,15N,16O^{12}C, ^{15}N, ^{16}O, and 26Mg^{26}Mg. The 20Ne,21Ne^{20}Ne, ^{21}Ne, and 24Mg^{24}Mg yields, which were reported to be negative at Zini_{ini} = 0.0001, become positive for Z=10−510^{-5}. The results using two different prescriptions for mass-loss rates differ widely in terms of the duration of the thermally-pulsing (Super) AGB phase, overall efficiency of the third dredge-up episode, and nucleosynthetic yields. The most efficient of the standard wind rates frequently used in the literature seems to favour agreement between our yield results and observational data. Regardless of the wind prescription, all our models become N-enhanced EMP stars.Comment: 18 pages, 12 figures, accepted for publication in Astronomy and Astrophysic
    • 

    corecore