12,002 research outputs found

    Discrimination between pure states and mixed states

    Get PDF
    In this paper, we discuss the problem of determining whether a quantum system is in a pure state, or in a mixed state. We apply two strategies to settle this problem: the unambiguous discrimination and the maximum confidence discrimination. We also proved that the optimal versions of both strategies are equivalent. The efficiency of the discrimination is also analyzed. This scheme also provides a method to estimate purity of quantum states, and Schmidt numbers of composed systems

    Field-dependent diamagnetic transition in magnetic superconductor Sm1.85Ce0.15CuO4−ySm_{1.85} Ce_{0.15} Cu O_{4-y}

    Full text link
    The magnetic penetration depth of single crystal Sm1.85Ce0.15CuO4−y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} was measured down to 0.4 K in dc fields up to 7 kOe. For insulating Sm2CuO4\rm{Sm_2CuO_4}, Sm3+^{3+} spins order at the N\'{e}el temperature, TN=6T_N = 6 K, independent of the applied field. Superconducting Sm1.85Ce0.15CuO4−y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} (Tc≈23T_c \approx 23 K) shows a sharp increase in diamagnetic screening below T∗(H)T^{\ast}(H) which varied from 4.0 K (H=0H = 0) to 0.5 K (H=H = 7 kOe) for a field along the c-axis. If the field was aligned parallel to the conducting planes, T∗T^{\ast} remained unchanged. The unusual field dependence of T∗T^{\ast} indicates a spin freezing transition that dramatically increases the superfluid density.Comment: 4 pages, RevTex

    Optimal Eavesdropping in Quantum Cryptography. II. Quantum Circuit

    Full text link
    It is shown that the optimum strategy of the eavesdropper, as described in the preceding paper, can be expressed in terms of a quantum circuit in a way which makes it obvious why certain parameters take on particular values, and why obtaining information in one basis gives rise to noise in the conjugate basis.Comment: 7 pages, 1 figure, Latex, the second part of quant-ph/970103

    Theory of Initialization-Free Decoherence-Free Subspaces and Subsystems

    Full text link
    We introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization. We derive a new set of conditions for the existence of DFSs within this generalized framework. By relaxing the initialization requirement we show that a DFS can tolerate arbitrarily large preparation errors. This has potentially significant implications for experiments involving DFSs, in particular for the experimental implementation, over DFSs, of the large class of quantum algorithms which can function with arbitrary input states
    • …
    corecore