1,968 research outputs found

    Isotope Shifts in Beryllium-, Boron-, Carbon-, and Nitrogen-like Ions from Relativistic Configuration Interaction Calculations

    Full text link
    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wave functions that account for valence, core-valence and core-core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.Comment: 56 pages, 1 figure, Atomic Data and Nuclear Data Tables (2014

    INFLUENCE OF SOCIO-ECONOMIC FACTORS ON FARMERS’ USE OF MOBILE PHONES FOR AGRICULTURAL INFORMATION IN NIGERIA

    Get PDF
    Farmers use mobile phones to access information needed to improve their agricultural practice. However, in cases where they do maximize their mobile phone utilization, they may be hindered by some socio-economic factors which may lead to inadequate access to agricultural information. Therefore, this study investigated the influence of socio-economic factors on famers’ use of mobile phones for agricultural information in Nigeria. The research adopted a survey design. The study population was 9,650 registered farmers in Yewa South Local Government, Ogun State, Nigeria. The proportionate stratified random sampling technique was used. The instrument used was structured questionnaire. Data were collected from 363 farmers; thus the study had 93%. Data was analyzed using descriptive statistics, Regression and Multi regression analysis. Findings from this study revealed that majority of the farmers use mobile phones daily (75.5%). It was further showed that farmers use mobile phones for specific purposes such as making phone calls (mean= 3.47), and receiving text messages (mean= 2.90). The findings also revealed that farmers use mobile phones to acquire different types of Agricultural information such as fertilizer and pesticide information (mean=2.52), and market information (mean=2.31). High tariff deductions from telecommunication companies (mean=3.53) was a major constrain. Findings further revealed that family size (β= .173; P˂.05), and Farm Size (β= .168; P˂.05) had positive significant influence on farmers’ use of mobile phones for agricultural information while Age range (β= -.031; P˂.05), Gender (β= -.027; P˂.05), Marital status (β= -.18; P˂.05), Educational qualification (β= -.031; P˂.05), Years of farming (β= -.126; P˂.05), Farm income per month (β= -.021; P˂.05) had negative influence respectively. Finally, socio-economic factors jointly influenced farmers’ use of mobile phones for agricultural information (F = 3.81; R² = .58, p \u3c .05). The study concluded that, socio-economic factors collectively contribute to farmers’ use of mobile phones for agricultural information. Therefore, it is recommended that telecommunication companies in Nigeria, in conjunction with the Federal Government, should provide a low tariff plans for farmers. This would enable them to adequately utilize their mobile phones for agricultural information

    Interaction effects and transport properties of Pt capped Co nanoparticles

    Get PDF
    We studied the magnetic and transport properties of Co nanoparticles (NPs) being capped with varying amounts of Pt. Beside field and temperature dependent magnetization measurements we performed delta-M measurements to study the magnetic interactions between the Co NPs. We observe a transition from demagnetizing towards magnetizing interactions between the particles for an increasing amount of Pt capping. Resistivity measurements show a crossover from giant magnetoresistance towards anisotropic magnetoresistance

    Extended Calculations of Spectroscopic Data: Energy Levels, Lifetimes and Transition rates for O-like ions from Cr XVII to Zn XXIII

    Full text link
    Employing two state-of-the-art methods, multiconfiguration Dirac--Hartree--Fock and second-order many-body perturbation theory, the excitation energies and lifetimes for the lowest 200 states of the 2s22p42s^2 2p^4, 2s2p52s 2p^5, 2p62p^6, 2s22p33s2s^2 2p^3 3s, 2s22p33p2s^2 2p^3 3p, 2s22p33d2s^2 2p^3 3d, 2s2p43s2s 2p^4 3s, 2s2p43p2s 2p^4 3p, and 2s2p43d2s 2p^4 3d configurations, and multipole (electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2)) transition rates, line strengths, and oscillator strengths among these states are calculated for each O-like ion from Cr XVII to Zn XXIII. Our two data sets are compared with the NIST and CHIANTI compiled values, and previous calculations. The data are accurate enough for identification and deblending of new emission lines from the sun and other astrophysical sources. The amount of data of high accuracy is significantly increased for the n=3n = 3 states of several O-like ions of astrophysics interest, where experimental data are very scarce

    Incorporation of excluded volume correlations into Poisson-Boltzmann theory

    Get PDF
    We investigate the effect of excluded volume interactions on the electrolyte distribution around a charged macroion. First, we introduce a criterion for determining when hard-core effects should be taken into account beyond standard mean field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several commonly proposed local density functional approaches for excluded volume interactions cannot be used for this purpose. Instead, we employ a non-local excess free energy by using a simple constant weight approach. We compare the ion distribution and osmotic pressure predicted by this theory with Monte Carlo simulations. They agree very well for weakly developed correlations and give the correct layering effect for stronger ones. In all investigated cases our simple weighted density theory yields more realistic results than the standard PB approach, whereas all local density theories do not improve on the PB density profiles but on the contrary, deviate even more from the simulation results.Comment: 23 pages, 7 figures, 1 tabl

    The Swedish Spine Register: development, design and utility

    Get PDF
    The Swedish Spine Register enables monitoring of surgical activities focusing on changes in trends over time, techniques utilized and outcome, when implemented in general clinical practice. Basic requirements for a prosperous register are unity within the profession, mainly patient-based documentation and a well functioning support system. This presentation focuses on the development and design of the register protocol, problems encountered and solutions found underway. Various examples on how the results can be presented and utilized are given as well as validation. Register data demonstrate significant gender differences in lumbar disc herniation surgery with females having more pain, lower quality of life and more pronounced disability preoperatively while improvement after surgery is similar between genders. Quality of life after surgery for degenerative disorders is significantly improved for disc herniation, stenosis, spondylolisthesis and disc degenerative disorders. Over the last 10 years, surgical treatment for spinal stenosis has increased gradually while disc herniation surgery decreases regarding yearly number of procedures. An added function to the register enables more complex prospective clinical studies to include register data together with data suitable for the individual study. A common core set of demographic, surgical and outcome parameters would enable comparisons of clinical studies within and between nations

    Exploring Biorthonormal Transformations of Pair-Correlation Functions in Atomic Structure Variational Calculations

    Full text link
    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of CSFs, many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the MCHF method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double- excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional CAS-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations

    On the feasibility of cooling and trapping metastable alkaline-earth atoms

    Get PDF
    Metastability and long-range interactions of Mg, Ca, and Sr in the lowest-energy metastable 3P2^3P_2 state are investigated. The calculated lifetimes are 38 minutes for Mg*, 118 minutes for Ca*, and 17 minutes for Sr*, supporting feasibility of cooling and trapping experiments. The quadrupole-quadrupole long-range interactions of two metastable atoms are evaluated for various molecular symmetries. Hund's case (c) 4_g potential possesses a large 100-1000 K potential barrier. Therefore magnetic trap losses can possibly be reduced using cold metastable atoms in a stretched M=2 state. Calculations were performed in the framework of ab initio relativistic configuration interaction method coupled with the random-phase approximation.Comment: 8 pages, 2 figures; to appear in PR

    Time and length scales in spin glasses

    Full text link
    We discuss the slow, nonequilibrium, dynamics of spin glasses in their glassy phase. We briefly review the present theoretical understanding of the spectacular phenomena observed in experiments and describe new numerical results obtained in the first large-scale simulation of the nonequilibrium dynamics of the three dimensional Heisenberg spin glass.Comment: Paper presented at "Highly Frustrated Magnetism 2003", Grenoble, August 200
    corecore