405 research outputs found

    Effects of Diffusion on Photocurrent Generation in Single-Walled Carbon Nanotube Films

    Full text link
    We have studied photocurrent generation in large carbon nanotube (CNT) films using electrodes with different spacings. We observe that the photocurrent depends strongly on the position of illumination, with maximum observed response occurring upon illumination at the electrode edges. The rate of change of the response decays exponentially, with the fastest response occurring for samples with the smallest electrode spacing. We show that the time response is due to charge carrier diffusion in low-mobility CNT films

    Structuring Services and Facilities for Library Instruction

    Get PDF
    published or submitted for publicatio

    Planar nanocontacts with atomically controlled separation

    Full text link
    We have developed a technology to reproducibly make gaps with distance control on the single atom scale. The gold contacts are flat on the nanometre scale and are fabricated on an oxidized aluminium film that serves as a gate. We show that these contacts are clean and can be stabilized via chemical functionalization. Deposition of conjugated molecules leads to an increase in the gap conductance of several orders of magnitude. Stable current-voltage characteristics at room temperature are slightly nonlinear. At low temperature, they are highly nonlinear and show a clear gate effect.Comment: 4 pages, 3 figure

    Nonlinear Viscous Vortex Motion in Two-Dimensional Josephson-Junction Arrays

    Get PDF
    When a vortex in a two-dimensional Josephson junction array is driven by a constant external current it may move as a particle in a viscous medium. Here we study the nature of this viscous motion. We model the junctions in a square array as resistively and capacitively shunted Josephson junctions and carry out numerical calculations of the current-voltage characteristics. We find that the current-voltage characteristics in the damped regime are well described by a model with a {\bf nonlinear} viscous force of the form FD=η(y˙)y˙=A1+By˙y˙F_D=\eta(\dot y)\dot y={{A}\over {1+B\dot y}}\dot y, where y˙\dot y is the vortex velocity, η(y˙)\eta(\dot y) is the velocity dependent viscosity and AA and BB are constants for a fixed value of the Stewart-McCumber parameter. This result is found to apply also for triangular lattices in the overdamped regime. Further qualitative understanding of the nature of the nonlinear friction on the vortex motion is obtained from a graphic analysis of the microscopic vortex dynamics in the array. The consequences of having this type of nonlinear friction law are discussed and compared to previous theoretical and experimental studies.Comment: 14 pages RevTex, 9 Postscript figure

    Vortex reflection at boundaries of Josephson-junction arrays

    Get PDF
    We study the propagation properties of a single vortex in square Josephson-junction arrays (JJA) with free boundaries and subject to an applied dc current. We model the dynamics of the JJA by the resistively and capacitively shunted junction (RCSJ) equations. For zero Stewart-McCumber parameter βc\beta_c we find that the vortex always escapes from the array when it gets to the boundary. For βc≥2.5\beta_c\geq 2.5 and for low currents we find that the vortex escapes, while for larger currents the vortex is reflected as an antivortex at one edge and the antivortex as a vortex at the other, leading to a stationary oscillatory state and to a non-zero time-averaged voltage. The escape and the reflection of a vortex at the array edges are qualitatively explained in terms of a coarse-grained model of a vortex interacting logarithmically with its image. We also discuss the case when the free boundaries are at 4545 degrees with respect to the direction of the vortex motion. Finally, we discuss the effect of self-induced magnetic fields by taking into account the full-range inductance matrix of the array, and find qualitatively equivalent results.Comment: 14 pages RevTex, 9 Postscript figure

    Electronic excitation spectrum of metallic carbon nanotubes

    Full text link
    We have studied the discrete electronic spectrum of closed metallic nanotube quantum dots. At low temperatures, the stability diagrams show a very regular four-fold pattern that allows for the determination of the electron addition and excitation energies. The measured nanotube spectra are in excellent agreement with theoretical predictions based on the nanotube band structure. Our results permit the complete identification of the electron quantum states in nanotube quantum dots.Comment: 4 pages, 3 figure

    Nanometer-spaced platinum electrodes with calibrated separation

    Full text link
    We have fabricated pairs of platinum electrodes with separation between 20 and 3.5 nm. Our technique combines electron beam lithography and chemical electrodeposition. We show that the measurement of the conductance between the two electrodes through the electrolyte provides an accurate and reproducible way to control their separation. We have tested the robustness of the electrodes by applying large voltages across them and by using them to measure the transport properties of Au nano-clusters. Our results show that the technique reliably produces metallic electrodes with a separation that bridges the minimum scale accessible by electron beam lithography with the atomic scale.Comment: 4 pages, 4 figure

    A thermostable trilayer resist for niobium lift-off

    Full text link
    We have developped a novel lift-off process for fabrication of high quality superconducting submicron niobium structures. The process makes use of a thermostable polymer with a high transition temperature T_{g}= 235 C and an excellent chemical stability. The superconducting critical temperature of 100 nm wide niobium lines is above 7 K. An example of shadow evaporation of a Nb-Cu submicron hybrid structure is given. A potential application of this process is the fabrication of very small single electron devices using refratory metals.Comment: 6 pages, 6 eps figures, submitted to Journal of Vacuum Science and Technology

    Phase-slip flux qubits

    Full text link
    In thin superconducting wires, phase-slip by thermal activation near the critical temperature is a well-known effect. It has recently become clear that phase-slip by quantum tunnelling through the energy barrier can also have a significant rate at low temperatures. In this paper it is suggested that quantum phase-slip can be used to realize a superconducting quantum bit without Josephson junctions. A loop containing a nanofabricated very thin wire is biased with an externally applied magnetic flux of half a flux quantum, resulting in two states with opposite circulating current and equal energy. Quantum phase-slip should provide coherent coupling between these two macroscopic states. Numbers are given for a wire of amorphous niobium-silicon that can be fabricated with advanced electron beam lithography.Comment: Submitted to New Journal of Physics, special issue solid state quantum informatio

    Discreteness-induced resonances and AC voltage amplitudes in long one-dimensional Josephson junction arrays

    Full text link
    New resonance steps are found in the experimental current-voltage characteristics of long, discrete, one-dimensional Josephson junction arrays with open boundaries and in an external magnetic field. The junctions are underdamped, connected in parallel, and DC biased. Numerical simulations based on the discrete sine-Gordon model are carried out, and show that the solutions on the steps are periodic trains of fluxons, phase-locked by a finite amplitude radiation. Power spectra of the voltages consist of a small number of harmonic peaks, which may be exploited for possible oscillator applications. The steps form a family that can be numbered by the harmonic content of the radiation, the first member corresponding to the Eck step. Discreteness of the arrays is shown to be essential for appearance of the higher order steps. We use a multi-mode extension of the harmonic balance analysis, and estimate the resonance frequencies, the AC voltage amplitudes, and the theoretical limit on the output power on the first two steps.Comment: REVTeX, 17 pages, 7 figures, psfig; to appear in J. Applied Physic
    • …
    corecore